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Types of NLP Tasks

Sequence classification
Sequence pair classification (text matching)

Sequence labeling

Sequence-to-sequence generation
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Information Retrieval

Tasks Text 1 Text 2 Objective
Paraphrase Indentification | string 1 string 2 C
Textual Entailment text hypothesis C
Question Answering question answer C/R
Conversation dialog response C/R
Information Retrieval query document R

Table: Typical text matching tasks (C: classification; R: ranking)
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Problem Definition

@ Search microblogs:

e Query: 2022 fifa soccer
o Relevant document: #ps3 best sellers: fifa soccer 11 ps3

#cheaptweet https://www.amazon.com/fifa-soccer-11-playstation-3
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Problem Definition

@ Search microblogs:

e Query: 2022 fifa soccer
o Relevant document: #ps3 best sellers: fifa soccer 11 ps3

#cheaptweet https://www.amazon.com/fifa-soccer-11-playstation-3

@ Search newswire articles:

e Query: international organized crime

o Relevant document: The past few years have been characterized by
an unprecedented growth in crime, changes in its characteristics, and
for all practical purposes the loss of state and public control over the
crime situation...

More than 40 |international smuggling crime groups have been
identified. More than 130 "Russian" stores selling Russian antiques
have been found abroad...

vvvvvvvvvvvv

WATERLOO
&

End-to-end Neural Information Retrieval



Why Neural Network

Why NN for NLP?

Why NN for IR?

vvvvvvvvvvvv

WATERLOO
i

End-to-end Neural Information Retrieval



Why Neural Network

Why NN for NLP?

@ Low-dimensional semantic space

Why NN for IR?

vvvvvvvvvvvv

WATERLOO
i

End-to-end Neural Information Retrieval



Why Neural Network

Why NN for NLP?
@ Low-dimensional semantic space

@ Thousands of variations

Why NN for IR?

vvvvvvvvvvvv

WATERLOO
i

End-to-end Neural Information Retrieval



Why Neural Network

Why NN for NLP?
@ Low-dimensional semantic space
@ Thousands of variations

@ Hierarchical structure

Why NN for IR?

vvvvvvvvvvvv

WATERLOO
i

End-to-end Neural Information Retrieval



Why Neural Network

Why NN for NLP?
@ Low-dimensional semantic space
@ Thousands of variations
@ Hierarchical structure

@ Hardware developments
Why NN for IR?

vvvvvvvvvvvv

WATERLOO
i

End-to-end Neural Information Retrieval



Why Neural Network

Why NN for NLP?
@ Low-dimensional semantic space
@ Thousands of variations
@ Hierarchical structure
@ Hardware developments
Why NN for IR?

@ Relevance judgments are based on a complicated human cognitive
process
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Related Work

@ before 2009: vector space models and probabilistic models (Query
likelihood (QL), BM25, RM3...)
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@ 2009: Learning to rank models (tens of hand-crafted features)
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@ 2013: Deep Structured Semantic Model (DSSM)
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@ 2014: CDSSM, ARC-I, ARC-II (mainly for short text ranking)
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@ 2016: MatchPyramid, DRMM ...
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e 2017: KNRM, DUET, DeepRank, PACRR ...
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@ 2018: HINT, MP-HCNN (hierachical matching patterns) ...
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Contribution

@ An end-to-end retrieval and reranking system to allow the user to
apply different retrieval models and neural reranking models on
different datasets.
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Contribution

@ An end-to-end retrieval and reranking system to allow the user to
apply different retrieval models and neural reranking models on
different datasets.

o State-of-the-art performance on two benchmark datasets (Robust04
and Microblog) for document retrieval.

@ Prove the effectiveness and additivity of a strong baseline for neural
reranking methods.

@ Co-design the MP-HCNN model for social media post searching.
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Architecture

Corpus ‘ Raw model

Train reranker

rerank

[ Trained | score
Query '".‘r',‘f,gid ‘ T,:m:? + — Top k2 documents
L top kI documents
Anserini

Reranker

retrieval score

Figure: The architecture of the Retrieval-rerank framework.
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Retrieval, Rerank and Aggregation

@ Retrieval: Anserini (QL, QL+RM3, BM25, BM25+RM3)
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Retrieval, Rerank and Aggregation

@ Retrieval: Anserini (QL, QL+RM3, BM25, BM25+RM3)
@ Rerank:

e MatchZoo models (DSSM, CDSSM, DUET, KNRM, DRMM)
o MP-HCNN
e BERT

o Aggregation:

rel(q, d) = A * Reranker(q, d) + (1 — \) = Retriever(q,d) (1)
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MatchZoo

NN Architecture
Model Task Dataset Encoding Hidden Combination
DSSM ) ! clickthrough ‘Word Hashing of ) .
(2013) Web Search data Letter-Trigram MLP Dot + softmax
CDSSM . clickthrough Word Hashing of | ConvlD + | Dot + softmax +
Web Search . .
(2014) data Letter-Trigram MLP Max Pooling
Query: Word
DRMM | Adhoc | Robust04 and Erﬁ’;ﬁ;ﬁg“ LD Dot
(2016) Retrieval ClueWeb09B . -
tion+matching
histogram
X LM: one-hot LM: intersection;
?;.IE:)T Web Search Blnglis:arch vector; DM: word ConvlD DM: entrywise
58 embedding product
K-NRM Ad-hoc search logs of i Kernel .
(2017) Retrieval Sogou.com Word embedding pooling Cosine

Figure: Details of five neural information retrieval models in MatchZoo
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MP-HCNN

Word-level Modeling Character-level Modeling

r Conv Layer 1 Conv Layer N Conv Layer 1 Conv Layer N

1

e Atention Atenton Atention
Atenton Avention o] poster a1 i
maix0 maid s 0. 3gram| 10_3gram| 10 3graml
el el *16._grami *10_gram| 1p_3grarm|

MaxMean Pooiing

Figure: Overview of our Multi-Perspective Hierarchical Convolutional Neural
Network (MP-HCNN), which consists of two parallel components for word-level

and character-level modeling between queries, social media posts, and URLS{K%&;‘S
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BERT

BERT

Epcis)

E[SEP]

o] [Ellel=] - [&]
[oLs] T¢1Jk " Tﬁk (SEP] T;:k . Thollk

Sentence 1 Sentence 2
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Figure: The architecture of the BERT model for text matching.
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Evaluation Metrics

i rel,(d
Precisiong = Z<”d>€"gq| q( ) 2
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> (i.dyeR, Precisiong i x relq(d)
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Test Set 2011 2012 2013 2014

7 query topics 49 60 60 55
# query-doc pairs 49,000 60,000 60,000 55,000

Table: Statistics of the TREC Microblog Track datasets
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Test Set 2011 2012 2013 2014

7 query topics 49 60 60 55
# query-doc pairs 49,000 60,000 60,000 55,000

Table: Statistics of the TREC Microblog Track datasets

# query topics 250
# query-doc pairs 250,000

Table: Statistics of the Robust04 datasets
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Experimental Setup

@ Train/test splits:

e Microblog: train on 2011, 2012 and 2013, test on 2014
o Robust04: five-fold cross validation
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@ Hyper-parameter tuning: 10% of the training data

vvvvvvvvvvvv

WATERLOO
i

End-to-end Neural Information Retrieval



Experimental Setup

@ Train/test splits:
e Microblog: train on 2011, 2012 and 2013, test on 2014
o Robust04: five-fold cross validation

o Hyper-parameter tuning: 10% of the training data

@ Models:

e Microblog: MatchZoo models, MP-HCNN, BERT
o Robust04: MatchZoo models
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Results of Baselines: Robust04

Model AP | P@20 | NDCG@20
QL (Guo et al.) 0.253 | 0.369 0.415
BM25 (Guo et al.) 0.255 | 0.370 0.418
DRMM (Guo et al.) 0.279 | 0.382 0.431

MatchPyramid (Pang et al.) | 0.232 | 0.327 0.411
BM25 (Mcdonald et al.) 0.238 | 0.354 0.425
PACRR (Mcdonald et al.) 0.258 | 0.372 0.443

Table: Previous Results on the Robust04 dataset
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Results of Baselines: Robust04

Model AP | P@20 | NDCG@20
QL (Guo et al.) 0.253 | 0.369 0.415
BM25 (Guo et al.) 0.255 | 0.370 0.418
DRMM (Guo et al.) 0.279 | 0.382 0.431

MatchPyramid (Pang et al.) | 0.232 | 0.327 0.411
BM25 (Mcdonald et al.) 0.238 | 0.354 0.425
PACRR (Mcdonald et al.) 0.258 | 0.372 0.443

Table: Previous Results on the Robust04 dataset

QL QL+RM3 | BM25 | BM254+RM3
AP 0.2465 0.2743 0.2515 0.3033
P@20 0.3508 0.3639 0.3612 0.3973
NDCG@O20 | 0.4109 0.4172 0.4225 0.4514
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Results of End-to-end Neural IR Models: Robust04

[ Models | MAP | P@20 | NDCG@20 |
BM25+RM3 | 0.3033 | 03973 | 0.4514
DSSM 0.0982~ | 0.1331" | 0.1551°
CDSSM | 0.0641 | 0.0842~ | 0.0772"
DRMM 0.2543~ | 0.3405~ | 0.4025~
KNRM 0.1145~ | 0.1480~ | 0.1512"
DUET 0.1426~ | 0.1561~ | 0.1946"
DSSM+RM3 | 0.3026 | 0.3946 | 0.4491
CDSSM+RM3 | 02095 | 03044 | 0.4468
DRMM+RM3 | 0.3151" | 0.4147+ | 0.4717+
KNRM+RM3 | 03036 | 03928 | 0.4441
DUET+RM3 | 03051 | 0.3986 | 0.4502

Table: Results of retrieval and reranking on the Robust04 dataset. RM: retrieval

model. NRM: neural re-ranking model. Significant improvement or degradation. .
WATERLOO

with respect to the retrieval model is indicated (+4/-) (p-value < 0.05). %
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Results of Baselines: Microblog

Method AP P@30

QL (Rao et al.) 0.3924 | 0.6182
RM3 (Rao et al.) | 0.4480 | 0.6339
L2R (Rao et al.) | 0.3943 | 0.6200
MP-HCNN (Rao et al.) | 0.4400 | 0.6612
BiCNN (Shi et al.) 0.4563 | 0.6806

Table: Previous Results on Microblog datasets
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Results of Baselines: Microblog

Method AP P@30

QL (Rao et al.) 0.3924 | 0.6182
RM3 (Rao et al.) | 0.4480 | 0.6339
L2R (Rao et al.) | 0.3943 | 0.6200
MP-HCNN (Rao et al.) | 0.4400 | 0.6612
BiCNN (Shi et al.) 0.4563 | 0.6806

Table: Previous Results on Microblog datasets

QL QL+RM3 | BM25 | BM25+RM3
AP | 0.4181 0.4676 0.3931 0.4374
P@30 | 0.6430 0.6533 0.6212 0.6442
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Table: Our results of retrieval models on Microblog datasets — Wwafgrico

End-to-end Neural Information Retrieval



Results of End-to-end Neural IR Models: Microblog

| Models | AP | P@30 |

QL+RM3 0.4676 | 0.6533
DSSM 0.2634— | 0.3836—
CDSSM 0.1936— | 0.2636—
DRMM 0.4477— | 0.6127—
KNRM 0.3432— | 0.5121—
DUET 0.2713— | 0.3533—
MP-HCNN 0.4497 | 0.6219
BERT 0.4646 | 0.6509

DSSM+RM3 0.4666 | 0.6539
CDSSM+RM3 0.4703 | 0.6624
DRMM+RM3 | 0.4862+ | 0.6703
KNRM+RM3 | 0.4848+ | 0.6624

DUET+RM3 0.4844+ | 06594 |

MP-HCNN+RM3 | 0.4902+ | 0.6712 W@

BERT+RM3 | 0.5011+ | 0.6842+
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Per-topic Analysis: Microblog

Per-topic analysis on map
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Figure: Per-topic differencesbetween BERT+RM3 and QL+RM3
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Figure: Per-topic differences between BERT and QL+RM3
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Per-topic Analysis: Robust04

Per-topic analysis on map
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Figure: Per-topic differences between DRMM+RM3 and BM25+RM3
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Sample Analysis: Microblog

Category Percentage (%)
Exact word match 100
Exact phrase match 41
Partial paraphrase match 64
Partial URL match 24

Table: Matching evidence breakdown by category based on manual analysis of the
top 100 tweets for the five best-performing topics with MP-HCNN on the
Microblog dataset.
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Conclusion and Discussion

@ 4,7, and 2
e SOTA

@ Discussion:
o relevance v.s. similarity
exact matching v.s. semantic matching
effectiveness v.s. efficiency
external knowledge v.s. domain-specific design
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