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ABSTRACT
The project presents simple distributed implementations of logistic

regression (LR) with several variants, including Gradient Descent

(GD) based, Stochastic Gradient Descent (SGD) based and Mini-

batch Stochastic Gradient Descent (MBSGD) based ones. These

implementations are tested on the sentiment analysis tasks, where

detailed hyper-parameters analysis is provided.
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1 INTRODUCTION
Logistic Regression (LR) is a widespread and useful machine learn-

ing algorithm in academia and industrial for its simplicity and

effectiveness. However, as the data is inflating rapidly, these ma-

chine learning algorithms and tools are needed to be adapted to

fit the big-data era. MapReduce [8] is a popular algorithm in dis-

tributed computing area while Hadoop [19] and Spark [23] are two

open-source framework for large-scale data processing.

Today, big data community and machine learning community

have sharply developed and several machine learning frameworks

for distributed computing have emerged, including MLLib, Mahout

and RHadoop [22]. However, for newbie to this area, these mature

but complicated machine learning libraries are hard due to the

compact code structure and they have no idea of how to "get the

hand dirty".

In this paper, we provide simple but comprehensive implemen-

tations for logistic regression and its variants including different

optimization methods and regularization. These implementations

provide the beginners a good chance to learn the basic concepts

of logistic regression and its spark implementation. Furthermore,

they can learn how to modify these simple code to enhance the

implementation and even provide more functions.

In this paper, we have following contributions:
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We offer several simple implementations for logistic regression

and its variants. These implementations could be a guidance of

distributed computing and machine learning.

We create a large tweets sentiment dataset with four-byte hash-

ing feature, which can be used for further experiments.

We provide rigorous hyper-parameter analysis for three variants

of logistic regression implementations.

2 BACKGROUND AND RELATEDWORK
Let’s start with an overview of machine learning. Given X to be the

input space while Y the output space, the set of training samples

D =
{
(x1,y1), (x2,y2)...(xn ,yn )

}
from the X x Y space, naming the

labeled examples. Usually, xi represents a featured vector where

xi ∈ Rd . In supervised classification task, yi comes from a finite set.

when in the binary classification,y ∈
{
−1,+1

}
. A function f :X ⇒

Y describing the data characteristics is introduced in the supervised

machine learning tasks. The optimized case will minimize the "loss"

function L that quantifiably measures the discrepancy between

predicted f (xi ) and the actual result yi . Minimizing the quantity∑
(xi ,yi )∈D L(f (xi ),yi ), the best f in the learned model is selected

from a hypothesis space. Then it can be employed on previously

unknown data to make predictions or offer predictive analysis. [5]

[9] Dealing with a two-class problem as the tweets sentiment, we

apply the binary logistic regression to assign observations onto two

classes.

Three components are of the most significance in the machine

learning solutions: the data, the features extracted from the data,

and the model. Among them, the size of the dataset is dominant

given the accumulated real-world experience over the last decades.

[10] [13] Simple models on massive data perform better than so-

phisticated modes on small data. [2] [4]

The traditional machine learning assumed sequential algorithms

on data fit in memory, which is no more realistic in the informa-

tion bang era. Multi-core [6] and cluster-based solutions [1] offer

new opportunities. Techniques occurs for example learning deci-

sion trees and the ensembles [20], MaxEnt models [16], structured

perceptrons [15] and so on. These approaches work well when

’data is king’ for their ability to process massive amount of data.

Despite the gaining popularization of large-scale learning, few pub-

lished studies focus on machine learning workflows and how such

tools integrate with data management platforms. Google detects

adversarial advertisements on Sculley et al. [18] Facebook builds

its data platform on Hive. [21] Cohen et al. applies the integration

of predictive analysis into traditional RDBMSes [7].

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


CS 651, 2018 Winter Peng Shi, Wei Yang, and Masijia Qiu

3 BASE ALGORITHM
3.1 Logistic Regression
Logistic regression [11] transforms its output using the logistic

sigmoid function to return a probability value which can then be

mapped to two or more discrete classes. Assuming a two-class prob-

lem with a training set D =
{
(x1,y1), (x2,y2)...(xn ,yn )

}
, where xi

are feature vectors and yi ∈
{
− 1,+1

}
, a class of linear discrimina-

tive functions can be defined of the form:

F (x) : RN →
{
− 1,+1

}
(1)

F (x) =
{
+1 i f w · x ≥ t

−1 i f w · x < t
(2)

where t represents a decision threshold and w is the weight

vector. The modeling process usually optimizes the weight vector

based on the training data D, and the decision threshold is sub-

sequently tuned by various operational constraints. To learn w ,

lots of methods have been proposed to optimize different forms

of loss functions or objective functions defined over the training

data, where logistic regression is one particularly well-established

technique interpreting the linear functionw · x as the logarithmic

odds of x belonging to class +1 over -1, i.e.,

loд[p(y = +1|x)
p(y = −1|x) ] = w · x (3)

The objective of regularized logistic regression (using Gaussian

smoothing) is to identify the parameter vector w that maximizes

the conditional posterior of the data.

L = exp(−λw2/2) ·
∏
i
p(yi |xi ) (4)

where

p(y = +1|x) = 1

(1 + exp(−w · x)) (5)

and

p(y = −1|x) = 1 − p(y = +1|x)

=
1

(1 + exp(w · x)) .
(6)

In this project, three type of the variants are applied accordingly:

Gradient Descent (GD) based, Stochastic Gradient Descent (SGD)

based and Mini-batch Stochastic Gradient Descent (MBSGD) based.

3.2 Gradient Descent
Recall the basic Gradient Descent method, it is accomplished by

adjusting the weight vector in the direction opposite to the gradient

of log( L )ï¼š

− ▽ loд(L) = λw +
∑
i

1

p(yi |xi )
ϑ

ϑw
p(yi |xi )

= λw +
∑
i
yip(yi |xi )(1 − p(yi |xi ))

(7)

3.3 Stochastic Gradient Descent
While in GD the whole training set is considered before taking

one model parameters update step, in SGD only one data point is

considered for each model parameters update step, cycling over the

Training Set. [3] In SGD update, the gradient is computed based

on a single training instance, the update to the weight vector upon

seeing the ith training example is given by

w ← w + η · [−λw + yi · p(yi |xi )(1 − p(yi |xi ))] (8)

Noted that each element in the weight vector is decayed at each

iteration. However, when the feature vectors of training instances

are very sparse (as is true for our project), we can simply delay the

updates for features until they are actually seen.

3.4 Mini-Batch Stochastic Gradient Descent
Mini-Batch Stochastic Gradient Descent (MBSGD) [12] is a variation

of the gradient descent algorithm that splits the training dataset

into small batches that are used to calculate model error and update

model coefficients. It chooses to sum the gradient over the mini-

batch or take the average of the gradient which further reduces

the variance of the gradient. Mini-batch gradient descent seeks

to find a balance between the robustness of stochastic gradient

descent and the efficiency of batch gradient descent. It is the most

common implementation of gradient descent used in the field of

deep learning.

3.5 Regularization
Regularization is a concrete method for add a "penalty term" to the

optimization problem, such that more complex models includes a

larger penalty. For the case of linear regression, the new optimiza-

tion problem is to minimize

MSE(w) + penalty(w),
where penaltyw is increasing with the ’complexity’ ofw . There-

fore, a complex solution can be chosen over simple one only if it

leads to a big decrease in the mean-squared error.

Many methods define the penalty term like ridge regression, L2
regularization and Tikhonov regularization. In this project, we’ll

consider the L2 regularization.
In this method, we define

penalty(w) = λ · | |w | |2
2

where λ is a positive ’hyperparameter’, a knob that allows you
to trade-off smaller MSE. For more details, we refer the reader to

the authoritative paper [17].

4 DISTRIBUTED GRADIENT DECENT VIA
APACHE SPARK

In this section, we describe our implementation details of three

variants of gradient decent algorithm under the distributed setup.

With reading feature vectors from text file, we push these text

lines to mapper to parse and generate training and testing instances

which is composed of document id (docid), label and feature vector.

These instances are represented as a RDD and used for further

processing.
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We describe three variants for the training processes including

Gradient Descent (GD), Stochastic Gradient Descent (SGD) and

Mini-Batch Stochastic Gradient Descent (MBSGD).

4.1 Gradient Descent
WithGD, the basic idea is to iterate all the training data and compute

the averaged gradient based on global view (all training data). In

general, the method to compute the averaged gradient is directly

sum up all the gradient that is based on each instance and divided

by the number of instances. However, because of the sparsity of the

feature vectors (most of the slots of the feature vectors are 0 and only

small fraction of them are 1), the denominator will have negative

effects on the magnitude of the gradient. More specifically, those

feature only appear once or twice will be greatly affected because

these values are divided by a large number (the total number of

the instances. To tackle this problem, we compute the frequency

of occurrence for each feature and use these frequencies as the

regulators for the gradient computed in each iteration.

Algorithm 1 GD

procedure GradientDescent
input← Read from file

inputFeatures← input.map(
process input line and
generate instance with
docid, label, and features)

globalWeight← Map[Int, Double]

FeatureCounter←
Count Feature Frequency of Occurrence

top:
w← broadcast(globalWeight)
inputFeatures.mapPartition(
∆w←

compute gradient based on
this partition and sum them up

).collect
globalWeight← sum over parital weights
goto top.

In each iteration, the global weight is broadcast to all mappers.

Here the mapPatition is used instead of map, because in the map-
Partion, the partially sum of the gradient can be computed and the

global sum of the gradient can be computed on single reducer and

update the global weight. This decision can greatly lesson the load

for the single reducer.

Algorithm 1 shows the details of the implementation.

4.2 Stochastic Gradient Descent
For Stochastic Gradient Descent (SGD), we add "dumpy key" for

each instances to ensure all the training instances are collected to

the reducer via groupByKey. After receiving all the training instance,
the weight is updated per instance.

Algorithm 2 shows more details.

Algorithm 2 SGD

procedure MiniBatchSGD

input← Read from file

inputFeatures← input.map(
process input line and
generate instance with
docid, label, and features)

globalWeight← Map[Int, Double]

top:
w← broadcast(globalWeight)
samples← inputFeatures.sample(fraction)
FeatureCounter←

Count Feature Frequency of Occurrence

∆w←
compute gradient based on

this sample and sum them up
and regularized

globalWeight← sum over parital weights
goto top.

4.3 Mini-Batch Stochastic Gradient Descent
TheMini-Batch Stochastic Gradient Descent (MBSGD) is the middle

ground for GD and SGD. For the implementation, we use sample
method to generate a small batch of training instances and apply

the same method as the GD in the following steps. More specifically,

the averaged gradient is computed based on the small batch training

instances and apply the update rules to the global weights. We need

to notice that the denominator for each feature is counted based

on this small batch size.

Algorithm 3 shows implementation details.

Algorithm 3 MBSGD

procedure StochasticGradientDescent
input← Read from file

inputFeatures← input.map(
process input line and
generate instance with
docid, label, and features)

globalWeight← Map[Int, Double]

top:
for each instance

∆w←
compute gradient based on
this instance

globalWeight← update with ∆w
goto top.

4.4 Regularization
We apply the L2 regularization during the training according to the

update rules of the Apache Spark version.

5 EXPERIMENT
In this section, we experiment our logistic regression implementa-

tions on Tweets Sentiment Analysis task. More specifically, the task
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Table 1: Dataset Statistics

TRAIN_ALL TEST_ALL TRAIN_SMALL TEST_SMALL
File Size 25 GB 6.1 GB 361 MB 73 MB

# of Positive Tweets 33,870,264 8,467,134 500,206 99,918

# of Negative Tweets 33,869,640 8,467,758 499,794 100,082

is a binary polarity classification task. That is, given a tweet, the

classifier is to predict the sentiment of the tweetyi which belongs to
{Neдative, Positive}. We follow the [14] to use the popular "emoti-

con trick" to generate the training and testing data. The intuition

behind this is that tweets with positive emoticons or emoji, e.g., :-)

and variants, express positive sentiment, and those with negative

emoticons or emoji, e.g., :-( and variants express negative sentiment.

However, we can not ensure that the data is in high quality because

people can choose to use some positive emoji to express some neg-

ative feelings, e.g., irony. Nevertheless, in practice, "emoticon trick"

is a good mechanism for generating large training instances.

5.1 Dataset Building
We generate training and testing data in following procedures: first,

we extract the tweets from February 2013 to April 2018 whose

language fields are English and classify them into two categories

regarding their sentiment, which is determined by "emoticon trick".

More specifically, if the tweet contains a emoji or emoticons which

is in our positive list, then it will be put into positive pool, and in

similar way we can generate negative pool. Those tweets tweets

which do not contain any emoticons or emoji, or only contain those

emoticons and emoji which are not appearing in our list, will not

be considered in our experiments. Following Lin and Kolcz [14],

we remove all preprocessed tweets with less than 20 characters.

Secondly, we regard each tweet as a byte array and move a four-

byte sliding window, with stride equals to one, along the array, and

hash the contents of the bytes. The hashed value is taken as the

feature id.

After preprocessing, the data is split into training and test set

by a ratio of 8:2. We truncate the tweets and try to ensure that the

numbers of positive and negative samples in both training and test

set are almost equal to avoid the skewed label distribution problem.

The statistics of the clean dataset can be viewed in Table 1.

5.2 Results
The best performance of three variants of gradient decent is shown

in Table 2. For simplicity, we only report results from one setting

(e.g. epoch, learning rate, batch size). More details analysis on effect

of hyper-parameter will be discussed in 5.3. From Table 2 we can see

that MBSGD performs the best while GD gets the lowest accuracy

among them in TEST_SMALL setting. We argue that this is because

MBSGD updates the weight parameter for each mini batch, which

combines the advantage of both SGD and GD: it cares about both

the global trend of the gradient but also pay attention to some tricky

sample clusters. Under TEST_ALL setting, we only can successfully

experiment on MBSGD and encounter OutOfMemory error under

other two implementations. There are several reasons behind this.

Table 2: Results

TEST_ALL TEST_SMALL
GD OOM 0.7268

SGD OOM 0.7457

MBSGD 0.7529 (f = 0.01) / OOM (f = 0.1) 0.7496

Figure 1: Parameter Analysis on Learning Rate

For example single machine might not have enough resource to

host the training process under SGD setting.

5.3 Parameter Analysis
The parameter analysis of learning rate η is shown in Figure 1.

We compare three GD variants with different learning rates (η =
0.002, 0.01, 0.05) on the small version of dataset. Other parameters

are kept fixed (λ = 0, N = 3). From the result we can see that

tuning the learning rate does help achieve better performance and

different GD variants has different optimal learning rates.

The parameter analysis of regularization coefficient λ is shown

in Figure 2. We run SGD with different regularization coefficients

(λ = 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.5) on the small version of

dataset. Other parameters are kept fixed (η=0, N=1). From the result

we can see that tuning the regularization coefficient helps little for

the final result and large λ will harm the performance.

The parameter analysis of epoch N is shown in Figure 2. We

compare three GD variants with different numbers of epochs (N =
1, 2, 3, 4) on the small version of dataset. Other parameters are kept

fixed (η=0, λ=0.002). From the result we can see that after one epoch,

on the other words, after the model goes through the whole dataset

for one pass, the performance tends to converge.

The parameter analysis of batch fraction f is shown in Figure

4. We run MBSGD with different fractions (f = 0.001, 0.01, 0.1, 1)
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Figure 2: Parameter Analysis on Regularization Coefficient

Figure 3: Parameter Analysis on Epoch

on the small version of dataset. Other parameters are kept fixed

(η = 0, λ = 0.002, N = 3). From the result we can see that smaller

fraction will bring better performance. Note that when f = 1, all

tweets are sampled for each iteration, which means now MBSGD

is essentially the same with GD. Under large fraction setting, the

algorithm uses less iterations in one epoch and to achieve same

accuracy, epoch number N needs to be larger.

6 CONCLUSION AND FUTUREWORK
In this project, we summarize our contributions in three points:

(1) We collect and clean the English stream of tweets text from

February 2013 to April 2018 and create the training and test

dataset for sentiment analysis with the label infromation

from emojis and emoticons.

(2) We extract the four byte character feature for each tweet

and implement the logistics regression with GD, SGD amd

mini-batch SGD for the sentiment analysis on the large scale

social media data.

(3) We provide the parameter analysis for the three variants of

gradient decent on a subset of the whole data.

In the future, we plan to implement more fancy optimization

tricks such as momentum, nesterov, learning rate decay and so on.

Figure 4: Parameter Analysis on Batch Fraction

We are also interested in comparing the time efficiency of different

variants of gradient decent under the setup of large-scale training

data.
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