LargeLSH: An Exploration of Locality Sensitive Hashing for Approximate Nearest Neighbours on High Dimensional Data using Apache Spark

Wei Yang, Zhucheng Tu | CS 798 | December 13, 2017

Outline

- Motivation for using LSH for ANN on high dimensional data
- Related work and background information
- Methodology
- Evaluation
- Summary and main takeaways

Motivation

- The **nearest neighbour problem** has applications in many areas, such as data mining, information retrieval, databases, and machine learning
- Curse of dimensionality: Can be efficiently solved at low-dimensions using computational geometry data structures, but space complexity grows at n^{O(d)}[1]
- Instead look towards **approximate nearest neighbours** (ANN) popular ways include kd trees, balltrees, LSH

Related Work

- Single Machine & Brute Force k-NN
 - Pros: high accuracy
 - Problems: low efficiency, especially when data grows large and distributed through network
- Distributed K-D tree [Mohamed et al. 2008]
 - Pros: high efficiency sacrificing little effectiveness
 - Cons1: low efficiency when data dimension grows large
 - Cons2: graph-based, not efficient to parallelize (due to iterations, think MapReduce implementation of PageRank)
- LSH at Large [Haghani et al. 2008]:
 - Pros: Built on top of Chord-like P2P network (data is distributed)
 - Cons: Designed for querying points one by one, not for batch workloads

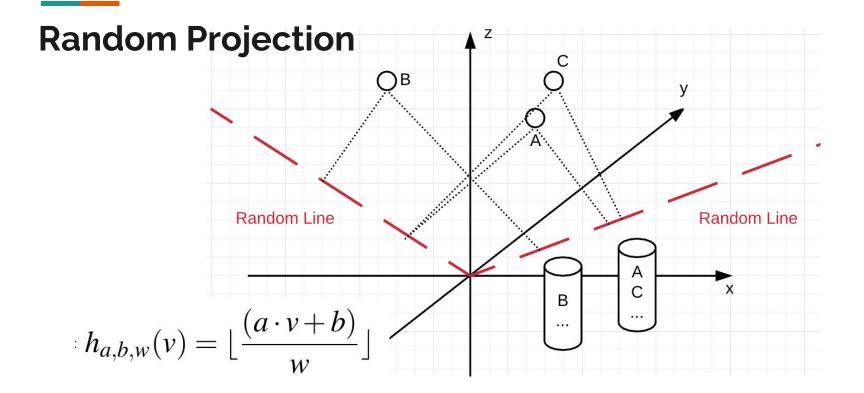
LSH using Apache Spark

- Many modern workloads cannot fit inside the memory of a single machine large datasets, each data point has many features
 - e.g. 80 million tiny images data set for object/scene recognition is 240 GB [2]
- Often, data is stored in a distributed file system, like HDFS
- Frameworks like MapReduce and Spark have become the de-facto for massive parallel computation on large datasets
- To our knowledge, there is little literature on distributed LSH using a modern parallel computation engine for the problem of ANN

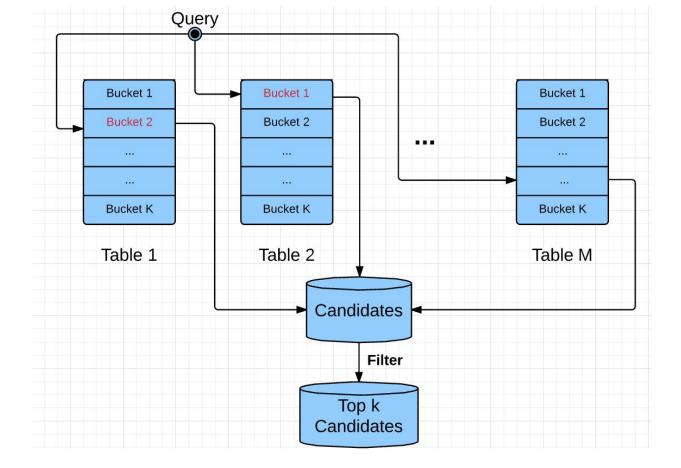
LSH using Apache Spark cont'ed

- We found an open-source Spark implementation¹ of hybrid spill tree approach of solving (ANN)
- Want to compare LSH against this approach and examine accuracy vs. running time, scalability
- Spark has 2 family of APIs:
 - Traditional Resilient Distributed Dataset (RDD)-based API
 - New DataFrame API

¹ <u>https://github.com/saurfang/spark-knn</u>



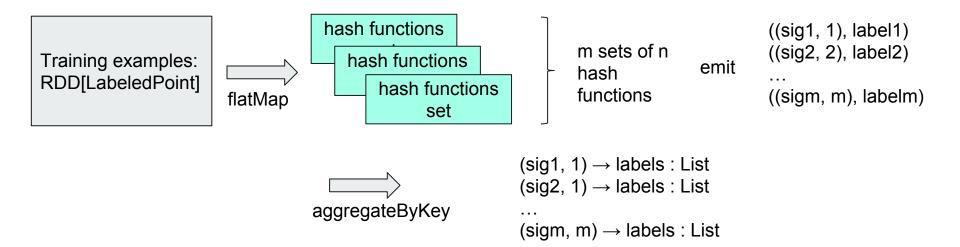
Query



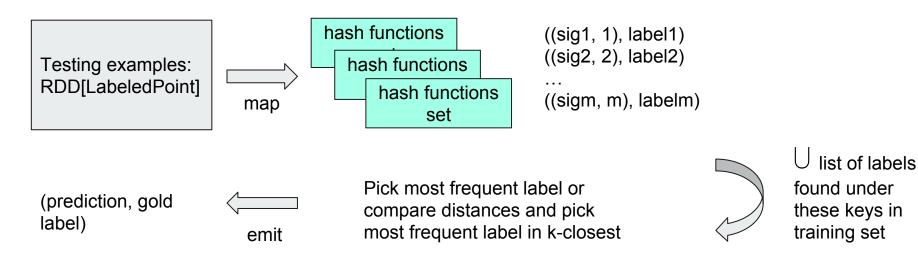
	gorithm 1: LSH-based A eighbor Search Algorithm	pproximate k-Nearest	
1 F	Function LSHkNN (H,Q) ;		
Ι	nput : Hash Table <i>H</i> and (Query Data Set Q	
0	Dutput: Prediction List of la	abels L	
2 L	$\downarrow \leftarrow \infty$		
3 f	or $q=1,2,\ldots,n$ do	<pre>// for each query</pre>	
	sample		
4	for $i = 1, 2,, m$ do	// for each hash	[
	table		
5	compute $h_{q,i} = g_i(Q_q)$,)	
6	find candidates $C_i =$	$findHash(H, h_{q,i})$	
7	end	an on singly and	
8	collect candidates $C = \bigcup_{i=1}^{m} C_i$		
9	find best candidates by set $i=$	l ome distance matric	
9	C' = findFirst(C,min(.))		
10	$L.insert(l_a)$	(C))	
11 e			
12 r	eturn <i>L</i> ;		

Algorithm 2: Distributed LSH		
1 Function largeLSH (H, Q, k, d) ;		
Input : Hash Table H, Query Data Set Q, Neighbor		
Number k , and distance threshold d		
Output: Prediction List of labels L		
2 generate ID column for H and Q		
3 results \leftarrow H.approxSimilarityJoin(Q) // search		
the hash table and union the results		
through a map-reduce way		
4 resultsThres \leftarrow filter(results, d) // get rid of		
candidates far from the query points		
5 resultsSelected \leftarrow SELECT trainID, testID,		
distance FROM results_thres		
6 resultsPartitioned \leftarrow		
findTopkByPartition(resultsSelected, k)		
7 $L \leftarrow$ resultsPartitioned.map(groundtruthVector		
Intersect predictionVector)		
8 return L ;		
а. — А		

RDD Random Projection Impl. Intuition



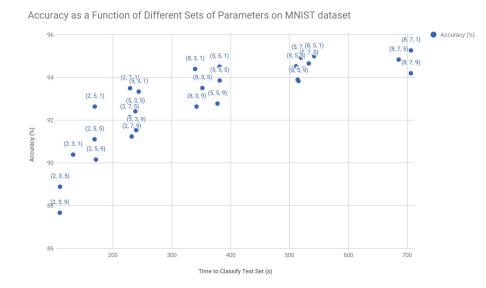
RDD Random Projection Impl. Intuition Cont'ed



Evaluation: Infrastructure and Dataset

- A small Spark cluster on Microsoft Azure
- 2 head nodes (A3), 4 cores, 285 GB disk each
- 2 worker nodes (A4), 8 cores, 14 GB RAM, 605 GB disk each
- Evaluated on
 - Standard Image Classification Task
 - MNIST: 60,000 * 784 Train, 10,000 * 784 Query
 - SVHN: 73,257 * 3,072 Train, 26,032 * 3,072 Query, 531,131 * 3,072 Extra
 - Large Scale Nearest Neighbor Search Task
 - SIFT1M: 1,000,000 * 128 Train, 10,000 * 128 Query
 - SIFT1B: 1,000,000,000 * 128 Train, 10,000 * 128 Query

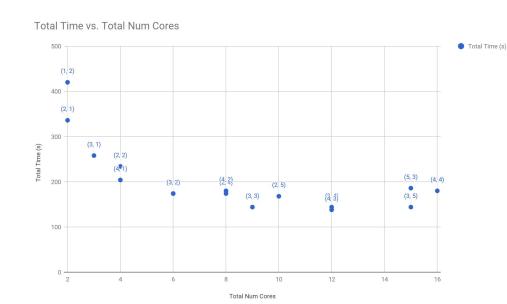
Evaluation: Accuracy vs. Time



- (bl, nht, k)
 - bl = bucket length
 - nht = # hash tables
 - k = # nearest neighbours
- ↑ bl, ↑ time, ↑ accuracy
- \uparrow nht, \uparrow time, \uparrow accuracy
- ↑ k, negligible effect on time,
 doesn't necessarily ↑ accuracy

spilltree implementation runs very slowly, need closer examination to ascertain result

Evaluation: Horizontal Scalability



- (# executors, # cores / executor)
- ↑ cores, ↓ time but with diminishing returns
- When the total # cores is fixed, more executors and fewer cores per executor is better than fewer executors and more cores per executor

Summary and Take Aways

- LSH-based approach:
 - can deliver high-accuracy results much faster than tree-based approaches
 - \circ is flexible: can tune parameters to choose between the accuracy vs. running tradeoff
 - can be scaled horizontally, but in sublinear fashion (diminishing returns)
- Our distributed LSH approach and implementation:
 - presents a robust and scalable solution to the distributed k-Nearest Neighbor search problem over high dimensional data under the batch setting
 - can serve as the baseline of distributed ANN algorithm on two standard batch-retrieval tasks and show the tradeoff between effectiveness, efficiency, and resources

References

[1] SHALEV-SHWARTZ, S., AND BEN-DAVID, S. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

[2] TORRALBA, A., FERGUS, R., AND FREEMAN, W. T. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine intelligence 30, 11 (2008), 1958–1970.

[3] Aly, Mohamed, Mario Munich, and Pietro Perona. "Distributed kd-trees for retrieval from very large image collections." Proceedings of the British Machine Vision Conference (BMVC). Vol. 17. 2011.

[4] Haghani, Parisa, et al. "LSH At Large-Distributed KNN Search in High Dimensions." WebDB. 2008.