Multi-Perspective Similarity Modeling with Hierarchical ConvNets for Social Media Search

Wei (Victor) Yang

March 28, 2018

Task: Social Media Search

Proposed Approach

Experiments

Overview

Task: Social Media Search

Proposed Approach

Experiments

Shorter length: Twitter posts are limited to 140 characters.

- Shorter length: Twitter posts are limited to 140 characters.
- Informality: Abbreviations, misspellings, typos and emojis

- Shorter length: Twitter posts are limited to 140 characters.
- Informality: Abbreviations, misspellings, typos and emojis
- Heterogeneous relevance signals
 - Many real-world news and events

- Shorter length: Twitter posts are limited to 140 characters.
- Informality: Abbreviations, misspellings, typos and emojis
- Heterogeneous relevance signals
 - Many real-world news and events
 - URLs or hastags

- Shorter length: Twitter posts are limited to 140 characters.
- Informality: Abbreviations, misspellings, typos and emojis
- Heterogeneous relevance signals
 - Many real-world news and events
 - URLs or hastags
 - Retweets

Related Work

Traditional non-neural methods for Ad-hoc Retrieval

- Probabilistic models: BM25, query likelihood and RM3
- Exact term match

Related Work

Traditional non-neural methods for Ad-hoc Retrieval

- Probabilistic models: BM25, query likelihood and RM3
- Exact term match

Domain-specific Matching Pattern Design

- ► Li et al. (2003) tried to understand the temporal behavior of a query on the web search logs dataset.
- ► Lee et al. (2015) concentrated on medical terminologies for medical documents.

Related Work

Traditional non-neural methods for Ad-hoc Retrieval

- Probabilistic models: BM25, query likelihood and RM3
- Exact term match

Domain-specific Matching Pattern Design

- Li et al. (2003) tried to understand the temporal behavior of a query on the web search logs dataset.
- Lee et al. (2015) concentrated on medical terminologies for medical documents.

Word Embedding and Character Embedding in NN

 It has shown an increasing trend to use both word embeddings and character embeddings in neural models.

Overview

Task: Social Media Search

Proposed Approach

Experiments

Model Framework

A. Hierarchical ConvNets

Word-level Modeling

A. Hierarchical ConvNets

CNN v.s. RNN

- Multiple consecutive convolution layers can extract phrase-level semantic representation
- CNN based network often converge faster than LSTM or GRU based network

Word-level Modeling

A. Hierarchical ConvNets

CNN v.s. RNN

- Multiple consecutive convolution layers can extract phrase-level semantic representation
- CNN based network often converge faster than LSTM or GRU based network
- Similarity Matrix (or Attention Matrix)
 - Pair-wise dot product of query terms and tweet terms

$$S_i = softmax(Q_i \otimes D_i)$$
 (1)

$$softmax(X) = \left[\frac{\mathbf{e}^{\mathbf{x}_1}}{\sum_i e^{x_{1i}}}, \frac{\mathbf{e}^{\mathbf{x}_2}}{\sum_i e^{x_{2i}}}, ..., \frac{\mathbf{e}^{\mathbf{x}_{lq}}}{\sum_i e^{x_{lq}i}}\right] \quad (2)$$

B. From Attention Matrix to Relevance Score

B. From Attention Matrix to Relevance Score

Max/Mean Pooling

$$\begin{aligned} & \textit{Max}(S) = [\max(\mathbf{s_1}), \max(\mathbf{s_2}), ..., \max(\mathbf{s_{l_q}})] \\ & \textit{Mean}(S) = [\textit{mean}(\mathbf{s_1}), \textit{mean}(\mathbf{s_2}), ..., \textit{mean}(\mathbf{s_{l_q}})] \end{aligned} \tag{3}$$

IDF weighting

 $Score(Q, D) = \sigma(W \cdot \mathsf{IDF}_{-}\mathsf{weights} \cdot \mathsf{Pooled}_{-}\mathsf{features} + b)$ (4)

Character-level Modeling

It allows us to match most OOV words and rare words

1. Loanword and non-English words: emociones (Spainish, emotions), desgostosa (Portuguese, disgusted), insomma (Italian, for heaven's sake), hayatm (Turkish, sweetheart)

- 1. Loanword and non-English words: emociones (Spainish, emotions), desgostosa (Portuguese, disgusted), insomma (Italian, for heaven's sake), hayatm (Turkish, sweetheart)
- 2. **Portmanteaus and compounds**: netizen, candieapple, freshideas, actor-director, scranton-based, early-stage

- 1. Loanword and non-English words: emociones (Spainish, emotions), desgostosa (Portuguese, disgusted), insomma (Italian, for heaven's sake), hayatm (Turkish, sweetheart)
- 2. **Portmanteaus and compounds**: netizen, candieapple, freshideas, actor-director, scranton-based, early-stage
- 3. **Abbreviations**: CHTE (Center for Heat Treating Excellence), b-day (birthday)

- 1. Loanword and non-English words: emociones (Spainish, emotions), desgostosa (Portuguese, disgusted), insomma (Italian, for heaven's sake), hayatm (Turkish, sweetheart)
- 2. **Portmanteaus and compounds**: netizen, candieapple, freshideas, actor-director, scranton-based, early-stage
- 3. **Abbreviations**: CHTE (Center for Heat Treating Excellence), b-day (birthday)
- 4. URLs, hashtags, and mentions: #nokia, @barackobama
 - http://www.huffingtonpost.com/2013/03/22/world-waterday-2013-facts_n_2927389.html

- 1. Loanword and non-English words: emociones (Spainish, emotions), desgostosa (Portuguese, disgusted), insomma (Italian, for heaven's sake), hayatm (Turkish, sweetheart)
- 2. **Portmanteaus and compounds**: netizen, candieapple, freshideas, actor-director, scranton-based, early-stage
- 3. **Abbreviations**: CHTE (Center for Heat Treating Excellence), b-day (birthday)
- 4. URLs, hashtags, and mentions: #nokia, @barackobama
 - http://www.huffingtonpost.com/2013/03/22/world-waterday-2013-facts_n_2927389.html
 - However, in previous social media search models, the URLs are often simply dropped or transformed into binary feature.

It allows us to leverage the information of most OOV words

- 1. Loanword and non-English words: emociones (Spainish, emotions), hayatm (Turkish, sweetheart)
- 2. **Portmanteaus and compounds**: netizen, candieapple, freshideas, actor-director, scranton-based, early-stage
- 3. **Abbreviations**: CHTE (Center for Heat Treating Excellence), b-day (birthday)
- 4. URLs, hashtags, and mentions: #nokia, @barackobama
- 5. **Typos**: begngen (beggen), yawnn (yawn), chomeos (Chrome OS), tansport (transport), afternoo (afternoon), foreverrrr (forever), yuppppppp, woooooow

It allows us to leverage the information of most OOV words

- 1. Loanword and non-English words: emociones (Spainish, emotions), hayatm (Turkish, sweetheart)
- 2. **Portmanteaus and compounds**: netizen, candieapple, freshideas, actor-director, scranton-based, early-stage
- 3. **Abbreviations**: CHTE (Center for Heat Treating Excellence), b-day (birthday)
- 4. URLs, hashtags, and mentions: #nokia, @barackobama
- 5. **Typos**: begngen (beggen), yawnn (yawn), chomeos (Chrome OS), tansport (transport), afternoo (afternoon), foreverrrr (forever), yuppppppp, woooooow
- 6. Domain-specific words: utf-8, vlookup

Overview

Task: Social Media Search

Proposed Approach

Experiments

Dataset: TREC Microblog Tracks in 2011-2014

Test Set	2011	2012	2013	2014
# of query topics	49	60	60	55
# of query-doc pairs	39,780	49,879	46,192	41,579
# of relevant docs	1,940	4,298	3,405	6,812
# of unique words*	21,649	27,470	24,546	22,099
# of unique OOV words*	13,067	17,190	15,724	14,331
# of URLs	20,351	25,405	23,100	20,885

*: after tokenization

- Dataset: TREC Microblog Tracks in 2011-2014
- Word Vectors

- Dataset: TREC Microblog Tracks in 2011-2014
- Word Vectors
 - GloVe 300-dimension word vectors pre-trained from Common Crawl Dataset with 840B tokens

- Dataset: TREC Microblog Tracks in 2011-2014
- Word Vectors
 - GloVe 300-dimension word vectors pre-trained from Common Crawl Dataset with 840B tokens
 - OOV word vectors and trigram vectors are uniformly sampled between [-0.05, 0.05].

- Dataset: TREC Microblog Tracks in 2011-2014
- Word Vectors
 - GloVe 300-dimension word vectors pre-trained from Common Crawl Dataset with 840B tokens
 - OOV word vectors and trigram vectors are uniformly sampled between [-0.05, 0.05].

Length Padding

- Dataset: TREC Microblog Tracks in 2011-2014
- Word Vectors
 - GloVe 300-dimension word vectors pre-trained from Common Crawl Dataset with 840B tokens
 - OOV word vectors and trigram vectors are uniformly sampled between [-0.05, 0.05].
- Length Padding
 - Each query is padded to 10 words and 51 trigrams
 - Each document is padded to 68 words and 140 trigrams

- Dataset: TREC Microblog Tracks in 2011-2014
- Word Vectors
 - GloVe 300-dimension word vectors pre-trained from Common Crawl Dataset with 840B tokens
 - OOV word vectors and trigram vectors are uniformly sampled between [-0.05, 0.05].
- Length Padding
 - Each query is padded to 10 words and 51 trigrams
 - Each document is padded to 68 words and 140 trigrams
- 4-fold Cross-validation: training on three years' datasets and testing on the rest one

Experiment Procedure

 Applied query likelihood (QL) algorithm¹ implementation provided by the TREC Microblog API² to retrieve up to 1000 tweets per topic.

²https://github.com/lintool/twitter-tools

¹QL is the original and basic method for using language models in IR. It evaluates the relevance score by Bayes rule and the multinomial unigram language model.

Experiment Procedure

- Applied query likelihood (QL) algorithm¹ implementation provided by the TREC Microblog API² to retrieve up to 1000 tweets per topic.
- 2. Rerank the tweet candidates by NN models

²https://github.com/lintool/twitter-tools

¹QL is the original and basic method for using language models in IR. It evaluates the relevance score by Bayes rule and the multinomial unigram language model.

Experiment Procedure

- Applied query likelihood (QL) algorithm¹ implementation provided by the TREC Microblog API² to retrieve up to 1000 tweets per topic.
- 2. Rerank the tweet candidates by NN models
- 3. Compute and compare the mean average precision (MAP) and precision at 30 (P@30)

²https://github.com/lintool/twitter-tools

¹QL is the original and basic method for using language models in IR. It evaluates the relevance score by Bayes rule and the multinomial unigram language model.

Baselines

- QL and previous NN models for text ranking
 - 1. Query Likelihood
 - 2. DSSM (2013)
 - 3. C-DSSM (2014)
 - 4. MatchPyramid (2016)
 - 5. DRMM (2016)
 - 6. DUET (2017)
 - 7. K-NRM (2017)

Baselines

- QL and previous NN models for text ranking
 - 1. Query Likelihood
 - 2. DSSM (2013)
 - 3. C-DSSM (2014)
 - 4. MatchPyramid (2016)
 - 5. DRMM (2016)
 - 6. DUET (2017)
 - 7. K-NRM (2017)
- Hybrid Models
 - 1. **RM3** is a hybrid model combining the QL model and the relevance model with the pseudo relevance feedback technique through the interpolation strategy.
 - 2. **Hybrid NN models** are the baselines (2)-(7) interpolated with QL.

Experiments 1: Overall Results

Table: MAP

20,11	20,12	20,13	20,14
0.3576	0.2091	0.2532	0.3924
0.1742	0.1087	0.1434	0.2566
0.0887	0.0803	0.0892	0.1884
0.1967	0.1334	0.1378	0.2722
0.2635	0.1777	0.2102	0.3440
0.1533	0.1325	0.1380	0.2680
0.2519	0.1607	0.1750	0.3472
0.3699	0.2313	0.2900	0.4144
	20,11 0.3576 0.1742 0.0887 0.1967 0.2635 0.1533 0.2519 0.3699	2011 2012 0.3576 0.2091 0.1742 0.1087 0.0887 0.0803 0.1967 0.1334 0.2635 0.1777 0.1533 0.1325 0.2519 0.1607 0.3699 0.2313	2011 2012 2013 0.3576 0.2091 0.2532 0.1742 0.1087 0.1434 0.0887 0.0803 0.0892 0.1967 0.1334 0.1378 0.2635 0.1777 0.2102 0.1533 0.1325 0.1380 0.2519 0.1607 0.1750 0.3699 0.2313 0.2900

Table: P@30

Model	20,11	20,12	20,13	20,14
QL	0.4000	0.3311	0.4450	0.6182
DSSM	0.2340	0.1791	0.2772	0.4261
C-DSSM	0.1122	0.1525	0.1717	0.2752
MatchPyramid	0.2259	0.2390	0.2561	0.4491
DRMM	0.3095	0.3169	0.4061	0.5424
DUET	0.2109	0.2356	0.2528	0.4091
K-NRM	0.3034	0.2966	0.3178	0.5388
Our Model	0.4014	0.3757	0.5161	0.6236

Experiments 2: Results of Hybrid Models

Table: MAP

Model	20,11	20,12	20,13	20,14
RM3	0.3824	0.2342	0.2738	0.4480
DSSM+	0.3589	0.1777	0.2435	0.3742
C-DSSM+	0.3380	0.2091	0.2532	0.3924
MatchPyramid+	0.3707	0.2170	0.2594	0.3915
DRMM+	0.3477	0.2213	0.2639	0.4042
DUET+	0.3576	0.2243	0.2779	0.4219
K-NRM+	0.3576	0.2277	0.2721	0.4137
Our Model+	0.4040	0.2482	0.2937	0.4412

Table: P@30

Model	20,11	20,12	20,13	20,14
RM3	0.4211	0.3452	0.4476	0.6339
DSSM+	0.4143	0.2989	0.4328	0.5885
C-DSSM+	0.3952	0.3311	0.4450	0.6182
MatchPyramid+	0.4190	0.3362	0.4556	0.6085
DRMM	0.4034	0.3537	0.4772	0.6139
DUET+	0.4000	0.3644	0.4878	0.6467
K-NRM+	0.4000	0.3520	0.4756	0.6358
Our Model+	0.4435	0.3915	0.5250	0.6345

Experiments 3: Ablation Test

Table: MAP

Model	20,11	20,12	20,13	20,14
QL	0.3576*	0.2091*	0.2532*	0.3924*
Our Base Model	0.3699	0.2313	0.2900	0.4144
-Doc_URL	0.3610*	0.2204*	0.2820	0.4052*
–Doc_Word	0.3713	0.2188*	0.2812*	0.4012*
–IDF weighting	0.3594*	0.2174*	0.2712*	0.4031*
-CL	0.3623	0.2181*	0.2763*	0.4050*
–WL	0.1651*	0.0762*	0.0987*	0.1849*

Table: P@30

Model	20,11	20,12	20,13	20,14
QL Baseline	0.4000	0.3311*	0.4450*	0.6182*
Our Base Model	0.4014	0.3757	0.5161	0.6236
-Doc_URL	0.4075	0.3458*	0.5117	0.6242
–Doc_Word	0.4190*	0.3537*	0.5122	0.6121*
 IDF weighting 	0.3980	0.3582*	0.4950*	0.6109*
–CL	0.3878*	0.3412*	0.5011*	0.6091*
–WL	0.1293*	0.1119*	0.1517*	0.2048*

Overview

Task: Social Media Search

Proposed Approach

Experiments

- We summarize our proposed model as multi-perspective architecture in social media search models because it
 - adopts attention matrix based NN architecture, which is widely applied and proved effective in text matching tasks

- We summarize our proposed model as multi-perspective architecture in social media search models because it
 - adopts attention matrix based NN architecture, which is widely applied and proved effective in text matching tasks
 - understands short but informative text by ConvNet

- We summarize our proposed model as multi-perspective architecture in social media search models because it
 - adopts attention matrix based NN architecture, which is widely applied and proved effective in text matching tasks
 - understands short but informative text by ConvNet
 - takes advantage of the URL and other OOV information by character-level modeling

- We summarize our proposed model as multi-perspective architecture in social media search models because it
 - adopts attention matrix based NN architecture, which is widely applied and proved effective in text matching tasks
 - understands short but informative text by ConvNet
 - takes advantage of the URL and other OOV information by character-level modeling
- Our proposed model:
 - requires much less training data to obtain a well-performed model compared to the previous NN models

- We summarize our proposed model as multi-perspective architecture in social media search models because it
 - adopts attention matrix based NN architecture, which is widely applied and proved effective in text matching tasks
 - understands short but informative text by ConvNet
 - takes advantage of the URL and other OOV information by character-level modeling
- Our proposed model:
 - requires much less training data to obtain a well-performed model compared to the previous NN models
 - is the first work to build an effective NN model in social media domain without query feedback or external data.

Q & A

► Thank You

