Detecting Customer Complaint Escalation with Recurrent Neural Networks and Manually-Engineered Features

RSVP.ai

Collaborates with:

Wei Yang, Luchen Tan, Chunwei Lu, Anqi Cui, Han Li, Xi Chen, Kun Xiong, Muzi Wang, Ming Li, Jian Pei and Jimmy Lin

Who are we?

RSVP.a

RSVP.ai is a Canadian startup based in Waterloo, Ontario that aims to build deep natural language understanding systems to facilitate seamless dialogues between humans and machines.

One of the largest Chinese e-commerce company. As of the first quarter of 2018, its platform has 301.8 million active users.

Customer Complaint Escalation

Detecting Customer Complaint Escalation

- 300+ complaints every day!
- Bad customer service experience causes serious brand
 Onlinegelassification problem over dialogue
 - Importance of real time detection system

How long does it takes for the customer complaints after they talk to the agents?

Hardkprohlem! <0.01% complaints!

Model

Tf-idf vectors **Neural Network!** Manually-engineered features

Hierarchical Attention Network

Yang et al. 2016. Hierarchical attention networks for document classification. (NAACL 2016)

RSVP.ai

Model Framework

Model Framework

Evaluation Metrics

 $Recall@K = \frac{\# of Detected Complainted Customers in Top K}{\# of Customer Complaints}$

Experimental Setup

- Comparison with Baselines
- Effect of Negative Samples
- Results over An Entire Week
- Online Deployment Results

Comparison with Baselines

Effect of Negative Samples

of negative samples

Results over An Entire Week

Online Deployment Results

Lesson Learned

- Start with simple models.
- **Don't start over.** Always reuse existing solutions.
- If NN cannot provide enough capacity, try manuallyengineered features!

Q & A

Thank you!