
Pairwise Loss with Max Sampling: A Neural
Meta-Architecture for Answer Selection

Wei Yang
David R. Cheriton School of Computer Science, University of Waterloo

Abstract

We introduce a novel neural network
“meta-architecture” called Pairwise Loss
with Max Sampling (PLMS) that trans-
forms any Siamese network into a new
design that improves classification accu-
racy without increasing model complex-
ity. Pairwise loss applies hinge loss to
the margin between positive and negative
examples and max sampling judiciously
chooses training pairs that lie along the de-
cision boundary. PLMS is based on the
reproduction of previous work on noise-
contrastive estimation. Demonstrating the
robustness of the generalized approach,
we are able to boost the accuracy of an
older but much simpler CNN to a level
rivaling the best (but substantially more
complex) models on a standard benchmark
question answering dataset. A hierarchi-
cal composition of neural network archi-
tectures yields simpler models that are eas-
ier to understand.

1 Introduction

From the rich literature on applying neural net-
works to NLP tasks that has emerged over the
last several years, researchers have identified ar-
chitectural patterns that are effective for certain
classes of tasks. For example, the Siamese archi-
tecture (Bromley et al., 1994) is often applied to
tasks involving predictions over pairs of sentences
(e.g., paraphrase detection and answer selection).
We refer to this as a “meta-architecture”, in that
Siamese designs manifest in a variety of networks
that all share common elements.

In this paper, we generalize the noise-
contrastive sampling framework proposed by Rao
et al. (2016) into a novel meta-architecture: we

propose an approach where Pairwise Loss with
Max Sampling (PLMS) can be applied to any
Siamese architecture. Pairwise loss applies hinge
loss to the margin between positive and negative
examples and max sampling judiciously chooses
training pairs that lie along the decision boundary.
The result is a design that substantially improves
on the base model without increasing its complex-
ity (e.g., number of parameters).

We illustrate pairwise loss with max sampling
on the answer selection task in question answer-
ing. Given a natural language question q and a
candidate set of sentences {c1, c2, . . . cn}, the goal
of answer selection is to identify sentences that
contain the answer (Tellex et al., 2003).

We generalize previous work into our PLMS
meta-architecture. First, we implement the model
by He et al. (2015) and Severyn and Moschitti
(2015) and reproduce the effectiveness of the
original paper. Then we add our PLMS meta-
architecture to the model of He et al. (2015) and
reproduce the results in Rao et al. (2016), which
either rival or beat the best published results on
TrecQA, one of the standard benchmarks for an-
swer selection.

Next, we applied our PLMS meta-architecture
to a mediocre architecture (Severyn and Moschitti,
2015) and on a new answer selection dataset, In-
suranceQA, which is not investigated by Rao et al.
(2016) and brings new challenges. Experiments
show that our techniques are able to substantially
improve upon each base model. As a demon-
stration of the robustness of the PLMS meta-
architecture, we show that by applying PLMS to
a simpler neural network (Severyn and Moschitti,
2015), we can achieve competitive results with the
best models in the literature in some cases. We
argue that thinking about neural network archi-
tectures in this hierarchical manner yields simpler
models that are easier to understand.



2 Related Work

There have been numerous applications of neural
networks to answer selection in question answer-
ing (Yu et al., 2014; Iyyer et al., 2014; Severyn
and Moschitti, 2015; Yang et al., 2016; dos San-
tos et al., 2016; He and Lin, 2016; Shen et al.,
2017; Tay et al., 2017; He et al., 2016; Yin and
Schütze, 2017; Bian et al., 2017; Rao et al., 2017;
Zhang et al., 2017; Sequiera et al., 2017). These
papers are too numerous to detail here, but a com-
mon theme is an increase over time in the com-
plexity of the models, incorporating innovations
such as multi-perspective and attention mecha-
nisms. From the ACL wikipedia page that summa-
rizes the performance improvements (ACL, 2018),
we see that increasingly complex models are con-
tributing to smaller and smaller gains on bench-
mark datasets. Furthermore, complex models ex-
hibit larger parameter space and can be easier to-
wards overfitting, which makes it challenging to
tell whether the minor improvements come from
more intelligent model designs or exhaustive tun-
ings by fitting to a local optimum. A natural and
important question to us, as the question answer-
ing community, to rethink thoroughly is: are those
complicated model architectures necessary for the
answer selection task?

In contrast to increasing model complexity, we
propose a meta-architecture design that introduces
no additional complexity to the base models to re-
place more complex “one-shot” models. The ad-
vantage of this approach is that we can build on
simple, well-understood, and robust base models
to achieve end-to-end effectiveness that is compa-
rable to the best (complex) models available.

Our terminology borrows from the learning-to-
rank (LtR) literature, which distinguishes point-
wise, pairwise (Huang et al., 2013), and listwise
methods (Li, 2011). Work on LtR, however, typi-
cally views pointwise and pairwise techniques are
being distinct. Our contribution here is a deter-
ministic approach to convert any Siamese neural
pointwise model into a pairwise model—in other
words, a generalization bridge between pointwise
and pairwise methods.

As mentioned above, many of our ideas have
been explored by Gutmann and Hyvärinen (2010)
and Rao et al. (2016). Our work can be viewed as
a generalization of Rao et al. (2016), in that their
application of noise contrastive estimation was in-
tertwined with the base model itself—whereas we

Figure 1: Architecture of our pairwise model with
input of on (Q,A+),(Q,A–) pairs.

are able to clearly identify a meta-architecture and
a deterministic set of transformations to improve
on a base Siamese model. Rao et al. (2016) ex-
plored two base models, one of which we share,
and therefore our experiments serve as a replica-
tion study. Finally, our application of PLMS over a
mediocre neural network model substantially im-
proves its accuracy and supports the generality and
robustness claim of our approach.

3 Approach

The PLMS meta-architecture takes as input a
Siamese neural network (a base model) and ap-
plies a series of deterministic transformations to
create a new model that yields higher accuracy.
This is shown in Figure 1, which we detail below.

3.1 Pairwise Loss
Abstractly, we consider a base model as a black
box function F (x, y; θ) → ŝ ∈ R. For question
answering the input would be (question, candidate
answer) pairs and the model predicts whether the
candidate is correct. F is typically trained with
respect to some loss Lf (ŝ, s). In learning-to-rank
parlance, this is called a pointwise model.

In the conversion from pointwise to pairwise
loss, we take the base model apply inference on
two pairs of input:

F (Q,A+; θ)→ ŝ+

F (Q,A–; θ)→ ŝ–

where A+ and A– are positive and negative exam-
ples for question Q. From this, we can define a
new margin hinge loss as follows:

L = max
max∑
min

(0,m− ŝ+ + ŝ–) + λ‖θ‖2

where our goal is to maximally discriminate pos-
itive from negative examples (m is a free param-
eter, and we empirically set m = 1 in all of our



experiments). We apply standard L2 regulariza-
tion based on θ, the underlying parameters of the
base model.

3.2 Negative Sampling

The next obvious question concerns how we sam-
ple positive and negative answers. To reduce
the complexity of the design space, our training
regime always begins with a (Q,A+) pair from the
training data. The question then becomes, how do
we generate (Q,A–) samples?

A simple but naı̈ve baseline would be to sample
(Q,A–) randomly from the training data, and in-
deed that forms a baseline. We call the setup as the
pairwise loss with random sampling (PLRS). In
the experiments we will show PLRS can achieve
similar performance to the base model with point-
wise loss and no sampling strategy but is not likely
to lead to significantly improvement. We argue
that it is mainly due to the low quality of nega-
tive samples obtained by PLRS that cannot bring
enough semantic matching signal to the domain-
specific task.

However, we can do better by modifying the
sampling strategy: our intuition is that if wish to
maximally discriminate between positive and neg-
ative examples, then it would be most effective se-
lect negative examples that are the “closest” to the
positive examples (but on the other side of the de-
cision boundary). We call this “max sampling”
and define closeness in terms of cosine similar-
ity between the latent representations of the base
model, i.e., sim(Λ(A+),Λ(A–)), where Λ(·) is the
latent representation of the candidates. The max
sampling process of negative samples can be for-
mulated as follows:

NegS(Q; θ) = argmaxA– sim(Λ(A+),Λ(A–))

In addition, Rao et al. (2016) mentions a mixed
sampling strategy that selects half of the samples
from each strategy, which appears to be effective
in some experiments (Tay et al., 2017). However,
in most circumstances, including the experiments
of Rao et al. (2016), we do not see significant ben-
efit of this setup. Thus, we do not present the re-
sults of this strategy.

In practice, we run a forward inference pass (us-
ing the current model) and use the features at the
fully-connected layer as the latent representation.
Thus the cosine similarity is usually taken as the
similarity function considering the distribution of

feature space. However, if the base model does not
provide an analogous latent representation, we can
back off to lexical similarity (e.g., tf-idf).

Thus, the revised learning problem can be for-
mulated as follows:

argminθ
∑

(Q,A+)

∑
(Q,A–)

max(0,m− ŝ+ + ŝ–) + λ‖θ‖2

where the number of negative examples is a hyper-
parameter.

3.3 Base Models

In this work we consider two base models, de-
scribed below:

SM-CNN (Severyn and Moschitti, 2015) is a sim-
ple, well-understood, and robust model, and can
be viewed as a baseline Siamese design—our goal
is to show that PLMS can substantially boost the
accuracy of simple architectures. In our imple-
mentation, we show that there are actually SM-
CNN four variants (see Section 4.1). Empirically,
we select the setup that performs best in the exper-
iments.

MP-CNN (He et al., 2015) achieved state-of-the-
art results on sentence similarity tasks when it was
first published (ACL, 2018): although other mod-
els have bested it since, it remains competitive.
Our goal is to show that PLMS can “squeeze”
more performance out of an already good model.
MP-CNN is admittedly more complex than SM-
CNN, which replaces hand engineering of features
with a substantial amount of architecture engineer-
ing. From Table 2 we can see SM-CNN is much
simpler than MP-CNN in term of number of pa-
rameters. This represents a recent trend in design-
ing architectures that capture different perspec-
tives for semantic feature extraction (Feng et al.,
2015; Tymoshenko et al., 2016; Ma et al., 2017;
Choi et al., 2017). With our reimplementation, we
reproduce the results showed in Rao et al. (2016)
on answer selection and achieve better results than
originally reported.

4 Experimental Setup

4.1 Word Embeddings

Experiments in this paper are based on our own
implementations, where we attempted to faith-
fully replicate the original are available. For SM-
CNN, we initialized the embedding layer from
pretrained 50-dimensional embedding on English



TrecQA WikiQA InsuranceQA
Train Dev Test Train Dev Test Train Dev Test1 Test2

# of questions 1229 82 100 873 126 243 12887 1000 1800 1800
# of question-answer pairs 53417 1148 1517 8672 1130 2351 - 500,000 900,000 900,000
Avg # of pos. answers / query 5.2 2.6 3.0 1.2 1.1 1.2 1.4 1.4 1.5 1.4
Avg % of pos. answers / query 12.0 19.3 18.7 12.0 12.3 12.4 - 0.3 0.3 0.3
Avg length of questions 8 6 7
Avg length of answers 28 25 95

Table 1: Statistics of all datasets for experiments.

Wikipedia and the AQUAINT corpus using the
skip-gram model following Severyn and Moschitti
(2015); out-of-vocabulary words were randomly
initialized, sampled from the uniform distribution
U [−0.25, 0.25]. For MP-CNN, we used pretrained
300-dimensional GloVe embedding on the Com-
mon Crawl; out-of-vocabulary words were ran-
domly initialized, sampled from the normal distri-
butionN(0, 0.01). According to Kim (2014), con-
sidering whether word embeddings are pretrained
and trainable, there are four types of setups: ran-
dom, static, non-static, multichannel. We tried all
four types, and got similar results for the last three
setups. But for simplicity, we only report results
with multichannel embedding for SM-CNN and
non-static embedding for MP-CNN since these
configurations achieve the best results empirically.
Note that the original SM-CNN implementation
followed the static strategy.

4.2 Hyperparameters

For the pointwise models we optimized cross en-
tropy loss using Adam (Kingma and Ba, 2014)
and for the pairwise models we optimized the
margin hinge loss described in Section 3.1 using
Adadelta (Zeiler, 2012). We fixed margin m to 1
and the dropout rate to 0.5 in all experiments. We
tuned the remaining hyperparameters on the vali-
dation set and selected the best parameter combi-
nation to evaluate on test set.

To examine the impact of our sampling tech-
niques, we compared the max sampling approach
described in Section 3.1 with random sampling
(i.e., simply choosing random negative examples).
In both cases we set the number of negative sam-
ples to n = 8. Different from Rao et al. (2016), we
stored the latent representation of each (Q,A) pair
in the memory and dynamically update them every
mini-batch instead of every epoch, which allowed
us to capture the most accurate representation of

positive and negative answers during training. To
further examine the effects of sampling, we ap-
plied max and random sampling to the pointwise
models as well—by simply augmenting the train-
ing data during each mini-batch (without taking
advantage of the pairwise loss).

We implemented all base models and their
PLMS versions using PyTorch1 and we will make
all of our code publicly available once our paper
gets accepted.

4.3 Datasets

Our evaluations were conducted on the three
widely-used benchmark datasets for ques-
tion selection: TrecQA (Wang et al., 2007),
WikiQA (Yang et al., 2015), and Insur-
anceQA (Feng et al., 2015). Table 1 shows
statistics of these three datasets. The numbers
of parameters for each model and each dataset
are showed in Table 4.1. We can see that adding
our PLMS based architecture does not change
the total parameters of the base model, and thus
did not increase additional time complexity.
Note that the same model has different number
of parameters for different datasets because the
vocabulary across datasets varies.

TrecQA. TrecQA was based on the Text REtrieval
Conference (TREC) Question Answering track (8-
13) data and was packaged by Yao et al. (2013).
As pointed out by Rao et al. (2016), TrecQA has
“raw” and “clean” versions, and both of them
are applied as the benchmark datasets to evalu-
ate models (He and Lin, 2016; Miao et al., 2016;
Wang et al., 2016b; dos Santos et al., 2016). Our
experiments are based on the raw version. From
Table 1 we can the TrecQA provides the most pos-
itive answers for each question compared to the
other two datasets, which provides more semantic
information for the positive matching, and further-

1http://pytorch.org/

http://pytorch.org/


Model Dimension of Embeddings Dataset # of Parameters

(PLMS +) MP-CNN 300
WikiQA 15,083,702
TrecQA 25,035,302

InsuranceQA 13,958,402

(PLMS +) SM-CNN 50
WikiQA 2,943,835
TrecQA 6,338,935

InsuranceQA 2,702,935

Table 2: Overview of models for experiments

more, as will be showed in the experiment section,
guide the PLMS based architecture to select the
negative samples better.

WikiQA. Similar to TrecQA, WikiQA is also a
sentence-level dataset for open domain question
answering, extracted from real users Bing query
and a snippet of a Wikipedia article retrieved by
Bing. For WikiQA, consistent with Yang et al.
(2015), we removed questions without positive
answers. From Table 1 We see that WikiQA
has a smaller proportion of candidate answers in
the training set but more questions and question-
answer pairs in the test set than TrecQA, which
brings the challenge of leveraging the matching
signals in various domains with relatively less
knowledge.

InsuranceQA. In InsuranceQA, all questions are
extracted from the insurance domain and one
question a large number of negative answers. The
dataset is composed of one training set, one val-
idation set, and two test sets. From Table 1, we
see that the answer sentences in InsuranceQA are
much longer than TrecQA and WikiQA. Unlike
the other two datasets that each question is pro-
vided with a list of specific candidate answers, the
questions in InsuranceQA share the same candi-
date pool (potentially larger) to find the correct
answer. Empirically, we randomly sampled 50
candidate negative answers from the answer pool
with 24981 sentences generated by Feng et al.
(2015). More details regarding to InsuranceQA
can be found in Feng et al. (2015)’s paper.

In summary, the unique characteristics of In-
suranceQA bring new challenges to our approach.
First, the candidate pool is much larger and the
percentage of positive answers are much less that
require a efficient and effective sampling tech-
nique. Meanwhile, the much longer sentences can
lead to difficulties in training time increases and
sentence representation learning, which provides
a good testbed for examining the generalizability

of our approach.

5 Results

5.1 Results on TrecQA & WikiQA

As previously described, by applying PLMS two
different models and three different datasets, we
demonstrate the generalizability of our meta-
architecture.

Experimental results are shown in Table 3,
where we report mean average precision (MAP)
and mean reciprocal rank (MRR), the two standard
metrics for characterizing accuracy on this task.
To capture the inherent variability in training neu-
ral networks (Reimers and Gurevych, 2017), we
report the mean [min, max] results from five trials
with different random seeds.

Our implementations achieve accuracies com-
parable to the original papers, which gives us con-
fidence they are correct. Note the implementa-
tion with the pointwise loss and no sampling is
exactly the reproduction of the base model. With
the full PLMS meta-architecture, we improve sub-
stantially over the base models. For TrecQA,
PLMS on MP-CNN achieves scores that are at
least as good as the highest scores reported in the
literature, summarized in the bottom half of Ta-
ble 3. Applying PLMS over SM-CNN yields gains
over the base model as well, which shows the ro-
bustness of our meta-architecture. In fact, apply-
ing PLMS over a very simple model like SM-CNN
outperforms many models that are far more com-
plex. It is worth emphasizing that PLMS improves
accuracy without increasing the complexity of the
base model (i.e., number of parameters).

Findings are generally consistent with the
WikiQA dataset. Although we do not beat the
best-reported scores in the literature, PLMS ap-
plied to MP-CNN yields accuracies that are com-

2The results are obtained by pretraining on SQuAD
dataset, which we argue are not fairly comparable to other
models listed above.



TrecQA WikiQA
Base Model Loss Sampling MAP MRR MAP MRR
Severyn and Moschitti (2015) 0.746 0.808 - -

SM-CNN
Point

- 0.759 [0.746,0.769] 0.811 [0.799,0.819] 0.654 [0.641,0.662] 0.679 [0.675,0.684]
Random 0.731 [0.720,0.738] 0.799 [0.790,0.809] 0.649 [0.643,0.659] 0.668 [0.661,0.678]

Max 0.737 [0.731,0.743] 0.810 [0.803,0.817] 0.652 [0.641,0.662] 0.674 [0.669,0.680]

Pair
Random 0.751 [0.735,0.765] 0.823 [0.815,0.830] 0.667 [0.660,0.674] 0.690 [0.684,0.695]

Max 0.763 [0.755,0.771] 0.833 [0.830,0.836] 0.679 [0.662,0.688] 0.702 [0.699,0.704]
He et al. (2015) 0.762 0.830 0.693 0.709

MP-CNN
Point

- 0.756 [0.749,0.766] 0.818 [0.802,0.832] 0.688 [0.677,0.693] 0.705 [0.691,0.714]
Random 0.761 [0.758,0.762] 0.819 [0.803,0.826] 0.668 [0.658,0.677] 0.687 [0.672,0.693]

Max 0.765 [0.757,0.772] 0.832 [0.829,0.839] 0.676 [0.665,0.684] 0.692 [0.684,0.698]

Pair
Random 0.768 [0.759,0.775] 0.837 [0.828,0.844] 0.705 [0.701,0.709] 0.712 [0.701,0.718]

Max 0.780 [0.771,0.787] 0.838 [0.830,0.846] 0.706 [0.702,0.709] 0.710 [0.699,0.719]
Previous Work
Yang et al. (2016) 0.750 0.811 - -
Tan et al. (2016) 0.753 0.830 - -
He and Lin (2016) 0.758 0.821 0.709 0.723
Rao et al. (2016) 0.780 0.834 0.701 0.718
Wang et al. (2016a) 0.737 0.821 0.734 0.741
Tymoshenko et al. (2016) - - 0.742 0.759
dos Santos et al. (2016) - - 0.689 0.696
Tay et al. (2017) 0.770 0.825 0.712 0.727
Yin and Schütze (2017) - - 0.712 0.723
Wang et al. (2017) - - 0.718 0.731
Min et al. (2017) (no pretraining) - - 0.630 0.645
Min et al. (2017) 2 - - 0.832 0.845

Table 3: Results on TrecQA and WikiQA datasets.

parable. Note that some of the papers that perform
well on WikiQA do not report results on TrecQA,
so it is unclear the extent to which those models
generalize. In the last row of Table 3, we see
the results from Min et al. (2017) with pretrain-
ing on the SQuAD (Rajpurkar et al., 2016) dataset
outperform other approaches by about 10 absolute
points. We argue that this is not a fair comparison
by comparing approaches with and without pre-
training, which is confirmed by the large drop of
the same approach when pretraining is removed.
Meanwhile, learning the effects of pretraining and
domain adaption is out of our scope in this paper.
Overall, results of PLMS applied to two differ-
ent base models across two different datasets il-
lustrates the generality of our meta-architecture.

We note that PLMS appears to improve MRR
more than it does MAP, and MRR difference be-
tween the base models are smaller than they are for
MAP. This makes sense since our loss attempts to
maximize the margin between positive and nega-
tive examples—and MRR is only concerned about
the appearance of the first correct answer.

In addition to the full PLMS meta-architecture,
Table 3 also breaks down the impact of each com-

ponent: the pairwise loss and the sampling tech-
niques. In general, we see that max sampling is
more effective than random sampling (except for
WikiQA with MP-CNN, where the MRR is very
close). Although it is possible to apply sampling
techniques with a pointwise loss, the approach is
not effective because it is unable to exploit the
contrast between positive and negative examples.

5.2 Results on InsuranceQA
We also report the results of applying PLMS to
SM-CNN on the InsuranceQA dataset. Due to the
time constraint, we are not able to fill in the per-
formance numbers of the MP-CNN and its PLMS
variant at the submission time. The inefficiency
is mainly due to the fact that MP-CNN is much
more time-consuming than SM-CNN and the In-
suranceQA dataset is around 12 times larger than
TrecQA and 75 times larger than WikiQA. We ar-
gue that reporting the SM-CNN results alone here
would not significantly alter our conclusion since
we already demonstrated the generalizability of
PLMS over TrecQA and WikiQA. We will add
those numbers at the publication time.

The evaluation on InsuranceQA is measured on
the accuracy (or precision@1) by following pre-



Our Implementation Dev Test1 Test2
SM-CNN 0.614 0.612 0.603
PLRS+SM-CNN 0.612 0.615 0.609
PLMS+SM-CNN 0.640 0.639 0.626
Previous Work
Bag-of-word 0.319 0.321 0.322
Bendersky et al. (2010) 0.527 0.551 0.508
Feng et al. (2015) 0.618 0.628 0.592
Feng et al. (2015) with GESD 0.654 0.653 0.610
Tan et al. (2016) 0.684 0.681 0.622
Wang et al. (2016a) 0.699 0.701 0.628
dos Santos et al. (2016) 0.687 0.717 0.644

Table 4: Results on InsuranceQA

vious publications (Feng et al., 2015; dos Santos
et al., 2016). From Table 4, we can see PLMS can
bring consistent improvements to the base SM-
CNN model. The performance of PLMS on SM-
CNN is already close to the state-of-the-art num-
bers in Test2 set. For the other Test1 set, our ap-
proach is still about 8 absolute point behind, while
we believe the PLMS on MP-CNN will achieve
more competitive results.

5.3 Per-Question Analysis

To gain further insights on how PLMS improve
on the base models, we conduct a per-question
analysis on TrecQA dataset as shown in Figure 2.
We visualize the differences between PLMS and
the base models SM-CNN and MP-CNN for each
question in term of the average precision score
(MAP). From Figure 2, we can clearly see that
PLMS provides stable and consistent improve-
ment on both SM-CNN and MP-CNN. It improves
31 questions while hurts 13 questions on SM-
CNN. The average improved scores is also larger
than those of the bad-performing questions for
both base models.

It’s also worth to note the two figures are not
in a similar shape because the base models behave
differently. Overall, these two figures confirm the
robust effectiveness of PLMS.

Furthermore, we present additional sample
analysis from TrecQA for the best-performing
question 67 (“where are the company conde nast’s
headquarters?”) and the worst-performing ques-
tion 14 (“when did the khmer rouge come into
power?”) in Table 5. The column “Score” denotes
the matching score of the question-answer pair
given by the two models: MP-CNN and PLMS +
MP-CNN.

Comparing sample 1, 2 and 3 in Table 5, we
can clearly see the benefits of PLMS based models

over the base neural networks: base model fails to
differentiate the sentences with an exact matched
phrase ‘conde nast’ and the semantic matching
signal of location such as ‘commercial neighbor-
hood’ and ‘time square’, while the PLMS based
model enlarges the scale of output scores so as to
distinguishes the right answer from the tricky neg-
ative candidates. However, comparing sample 4
and 5, we can see that PLMS based method will
still suffer from the semantic-oriented matching
problem since both candidates contains an exact
matched phrase ‘khmer rouge’ and a year.

6 Conclusions

This paper introduces the notion of a neural meta-
architecture which takes a base Siamese neural
model and automatically generates a better model
by applying two ideas: pairwise loss to maximize
the margin between positive and negative exam-
ples and max sampling to judiciously select train-
ing examples to exploit the loss. Experiments
show that both techniques are complementary and
necessary, and that our meta-architecture is ro-
bust and general. We empirically show for answer
selection that hierarchically designing neural net-
works in this manner yields designs that are sim-
pler, easier to understand, and yet achieve accura-
cies at least as good as far more complex models.
From the experiments on various QA benchmark
datasets, we demonstrate the robustness and gen-
eralizability of our approach.

7 Future Work

There are a few potential research directions for
future exploration.

More diverse network structures: Besides
Siamese type of neural networks, we are looking
for more diverse types of networks that PLMS can
be applied on. By designing the way to deal with
the specific task according to pair-wise loss func-
tion, we can investigate PLMS is still effective
for other network structures and research areas be-
sides answer selection.

Tradeoffs between model efficiency and ef-
fectiveness: By changing the loss function for the
existing models without adding model complex-
ity, PMLS achieved better results comparing with
the base model. The main insight of PLMS is that
finding the most challenging negative samples is
critical to improve model performance.

However, this usually requires an exhaustive
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Figure 2: Visualization of per-question performances’ difference on TrecQA between base model and
PLMS based architecture

ID QID Candidate answer Label Score
Base PLMS

1

67

other issues were bandied about in the brand-new conde nast
headquarters in times square in manhattan .

1 0.029 1.449

2
since conde nast signed a deal for the building nearly three

years ago , times square has become one of the most
sought-after commercial neighborhoods in the city .

0 0.042 1.390

3
conde nast will be moving from its old-money environs on
the east side , within easy reach of brooks brothers , paul
stuart and patroon , to the hurly-burly of times square .

0 0.032 0.547

4
14

the defectors were key players in the khmer rouge ’s rule
after the maoist revolutionaries won a civil war in 1975 .

1 0.023 0.182

5 1996 : government announces khmer rouge breakup . 0 0.005 0.349

Table 5: Sample Analysis on TrecQA

search over the answer pool. In many real sce-
narios, like recommendation, the answer pool can
contain thousands or even millions of candidates
(i.e., users or items in recommendation setting).
How to tradeoff efficiency to support fast learning
in a large-scale setting while maintaining compet-
itive effectiveness at th wato
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