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Open Domain Question Answering
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019
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Experimental Setup
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Problem Definition

Machine Reading Comprehension (MRC): The question
and the evidence document that might contain the answer to
the question are given. The target is to find the answer from
the document.

Open Domain Question Answering: Only the question is
given.

Experiment Design

Training: train a MRC model on the human-annotated
datasets (e.g. SQuAD and CMRC).
Inference: retrieve evidence documents using information
retrieval toolkit. Then use the MRC model to read them!
Evaluation: use exact match (EM) and partial match (F1)
scores between the prediction and ground truth answer as the
evaluation metric.
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BERTserini
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Anserini Retriever

Inverted
Index

Question

top k segments

AnswerFine-tuned
BERT +

BERT Reader

segment score

span
score

Pretrained 
BERT

Indexing Fine-tuning on SQuAD

Figure: Architecture of BERTserini
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BERTserini Pipeline
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Anserini-Retriever:

Filters out relevant documents
Gives paragraph scores.
BM25 Similarity:

score(D,Q) =
n∑

i=1

IDF(qi ) ·
f (qi ,D) · (k1 + 1)

f (qi ,D) + k1 · (1− b + b · |D|
avgdl )

BERT-Reader:

Reads paragraphs by Anserini;
Predicts the answer spans;
Gives phrase scores.
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BERTserini Pipeline
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Figure: BERT for Question Answering
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BERTserini Pipeline
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Anserini-Retriever:

Filters out relevant documents
Gives paragraph scores.
BM25 Similarity

BERT-Reader:

Reads paragraphs by Anserini;
Predicts the answer spans;
Gives phrase scores.

Aggregator:

Re-ranks the predictions according to weighted sum of scores.

S = (1− µ) · SBM25 + µ · SBERT,

where µ ∈ [0, 1] is a hyperparameter.
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Text Segments
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Article: The 5.08M Wikipedia articles are directly indexed;
that is, an article is the unit of retrieval.

Paragraph: The corpus is pre-segmented into 29.5M
paragraphs and indexed, where each paragraph is treated as a
“document” (i.e., the unit of retrieval).

Sentence: The corpus is pre-segmented into 79.5M sentences
and indexed, where each sentence is treated as a “document”.
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BERTserini
End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Figure: Results on SQuAD development questions.
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Distant Supervision
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

BERTserini only fine-tune BERT on the original SQuAD
dataset, containing a total of only 442 documents.

This contrasts with the diversity of paragraphs that the model
will likely encounter at inference time in the retrieval-based
setting.

We create additional training examples by fetching paragraphs
from the corpus using Anserini and give these paragraphs
labels based on the ground truth answers provided.
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Fine-tuning Order
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

SRC + DS: Fine-tune BERT with all data, “lumped”
together as a single, larger training set. In practice, this means
that the source and augmented data are shuffled together.

DS → SRC: Fine-tune the reader in stages, first on the
augmented data and then the source dataset.

SRC → DS: Fine-tune the reader in stages, on the source
dataset and then the augmented data.
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Fine-tuning Order
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Model EM F1 EM F1

SQuAD CMRC

SRC 41.8 49.5 44.5 60.9
DS(+) 44.0 51.4 45.5 61.1
DS(±) 48.7 56.5 48.3 63.9
SRC+DS(±) 45.7 53.5 49.0 64.6
DS(±) → SRC 47.4 55.0 45.6 61.9
SRC → DS(±) 50.2 58.2 49.2 65.4

Table: Results exploring different approaches to combining source and
augmented training data on the two datasets: SQuAD and CMRC.
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Negative Sampling Strategy
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Top-down: We choose negative examples with the highest
paragraph scores from the retrieved paragraphs.

Bottom-up: We choose negative examples with the lowest
paragraph scores from the retrieved paragraphs.

Random: We randomly sample negative examples from the
retrieved paragraphs.
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Negative Sampling Strategy
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

SQuAD CMRC
EM F1 EM F1

Top-down 49.2 57.2 48.8 64.5
Bottom-up 46.8 54.9 48.6 65.2
Random 49.6 57.6 48.6 64.7

Table: Effects of different negative sampling strategies on SQuAD and
CMRC.
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Sample Ratio
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Figure: Effects of varying d , the positive–negative ratio of examples, on
SQuAD.
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Parameter Analysis
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Figure: Effects of the number of retrieved paragraphs k on SQUAD
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Sample Analysis
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Question Answers from BERTserini*
Answers from our
augmented model

Super Bowl
50 decided

the NFL
champion
for what
season?

Super Bowl XXXVII was an
American football game between the
American Football Conference (AFC)
champion Oakland Raiders and the

National Football Conference (NFC)
champion Tampa Bay Buccaneers to
decide the National Football League

(NFL) champion for the 2002
season.

Super Bowl 50 decided the
2015 NFL Champion and

was played at Levi’s
Stadium in Santa Clara,

California on Sunday,
February 7, 2016.

Table: Sample questions and answers
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Unsolved Issues
Multiple Spans

Figure: Noisy supervision can cause many spans of text that contain the
answer, but are not situated in a context that relates to the question
(red), to distract the model from learning from more relevant spans
(green).
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Unsolved Issues
Adversarial Examples

Figure: An example from the SQuAD dataset. The BiDAF Ensemble
model originally gets the answer correct, but is fooled by the addition of
an adversarial distracting sentence (in blue).
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Paragraph Reranking
Ranking Paragraphs for Improving Answer Recall in Open-Domain Question Answering

Figure: Open-domain QA pipeline with Paragraph Ranker
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Answer Reranking
1. Evidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering
2. Retrieve, Read, Rerank: Towards End-to-End Multi-Document Reading Comprehension

Figure: Retrieve-Read-Rerank QA Architecture
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Weakly Supervised QA
A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

Multi-mention reading comprehension

Reading comprehension with discrete reasoning

Semantic Parsing
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Weakly Supervised QA
A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

In the weak supervision scenario, the model has access to x and
Z = {z1, z2, . . . , zn}, and the selection of the best solution in Z
can be modeled as a latent variable.

JMML(θ|x ,Z ) = −log P(y |x ; θ)

= −log
∑

zi∈Ztot
P(y |zi )P(zi |x ; θ)

= −log
∑

zi∈Z P(zi |x ; θ)
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Weakly Supervised QA
A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

The model computes the likelihood of each zi given the input
x with respect to θ, P(zi |x ; θ), and picks one of Z with the
largest likelihood:

z̃ = argmaxzi∈ZP(zi |x ; θ)

Then, the model optimizes on a standard negative log
likelihood objective, assuming z̃ is a true solution.

JHard(θ|x ,Z ) = −log P(z̃ |x ; θ)

= −log maxzi∈ZP(zi |x ; θ)

= −maxzi∈Z log P(zi |x ; θ)
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Weakly Supervised QA
A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

Figure: Results on WIKISQL
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Q & A

Thanks!
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