Recent Advances on Open Domain Question Answering RSVP.ai

Victor Wei Yang

October 24, 2019

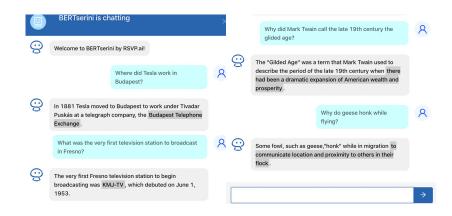
A Simple Baseline: Retriever + Reader

Data Augmentation

Model Improvement

Open Domain Question Answering

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019



End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

O Problem Definition

O Machine Reading Comprehension (MRC): The question and the evidence document that might contain the answer to the question are given. The target is to find the answer from the document.

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

- O Machine Reading Comprehension (MRC): The question and the evidence document that might contain the answer to the question are given. The target is to find the answer from the document.
- O **Open Domain Question Answering**: Only the question is given.

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

- O Machine Reading Comprehension (MRC): The question and the evidence document that might contain the answer to the question are given. The target is to find the answer from the document.
- **Open Domain Question Answering**: Only the question is given.
- O Experiment Design
 - O **Training**: train a MRC model on the human-annotated datasets (e.g. SQuAD and CMRC).

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

- O Machine Reading Comprehension (MRC): The question and the evidence document that might contain the answer to the question are given. The target is to find the answer from the document.
- **Open Domain Question Answering**: Only the question is given.
- O Experiment Design
 - O **Training**: train a MRC model on the human-annotated datasets (e.g. SQuAD and CMRC).
 - O **Inference**: retrieve evidence documents using information retrieval toolkit. Then use the MRC model to read them!

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

- O Machine Reading Comprehension (MRC): The question and the evidence document that might contain the answer to the question are given. The target is to find the answer from the document.
- **Open Domain Question Answering**: Only the question is given.
- O Experiment Design
 - O **Training**: train a MRC model on the human-annotated datasets (e.g. SQuAD and CMRC).
 - O **Inference**: retrieve evidence documents using information retrieval toolkit. Then use the MRC model to read them!
 - O **Evaluation**: use exact match (EM) and partial match (F_1) scores between the prediction and ground truth answer as the evaluation metric.

BERTserini

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

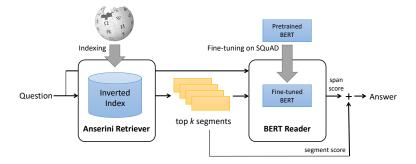


Figure: Architecture of BERTserini

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

O Anserini-Retriever:

- O Filters out relevant documents
- O Gives paragraph scores.
- O BM25 Similarity:

$$\operatorname{score}(D, Q) = \sum_{i=1}^{n} \operatorname{IDF}(q_i) \cdot \frac{f(q_i, D) \cdot (k_1 + 1)}{f(q_i, D) + k_1 \cdot (1 - b + b \cdot \frac{|D|}{\operatorname{avgdl}})}$$

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

O Anserini-Retriever:

- O Filters out relevant documents
- O Gives paragraph scores.
- O BM25 Similarity:

$$\mathsf{score}(D,Q) = \sum_{i=1}^{n} \mathsf{IDF}(q_i) \cdot \frac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot (1-b+b \cdot \frac{|D|}{\mathsf{avgdl}})}$$

O BERT-Reader:

- O Reads paragraphs by Anserini;
- O Predicts the answer spans;
- O Gives phrase scores.

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

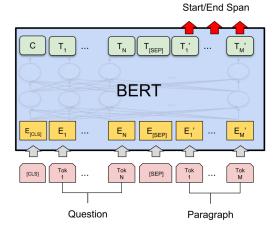


Figure: BERT for Question Answering

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

O Anserini-Retriever:

- O Filters out relevant documents
- O Gives paragraph scores.
- O BM25 Similarity
- O BERT-Reader:
 - O Reads paragraphs by Anserini;
 - O Predicts the answer spans;
 - O Gives phrase scores.

O Aggregator:

O Re-ranks the predictions according to weighted sum of scores.

$$S = (1 - \mu) \cdot S_{ ext{BM25}} + \mu \cdot S_{ ext{BERT}}$$
,

where $\mu \in [0, 1]$ is a hyperparameter.

Text Segments

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

• **Article**: The 5.08M Wikipedia articles are directly indexed; that is, an article is the unit of retrieval.

Text Segments

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

- **Article**: The 5.08M Wikipedia articles are directly indexed; that is, an article is the unit of retrieval.
- **Paragraph**: The corpus is pre-segmented into 29.5M paragraphs and indexed, where each paragraph is treated as a "document" (i.e., the unit of retrieval).

Text Segments

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

- **Article**: The 5.08M Wikipedia articles are directly indexed; that is, an article is the unit of retrieval.
- **Paragraph**: The corpus is pre-segmented into 29.5M paragraphs and indexed, where each paragraph is treated as a "document" (i.e., the unit of retrieval).
- Sentence: The corpus is pre-segmented into 79.5M sentences and indexed, where each sentence is treated as a "document".

BERTserini

End-to-End Open-Domain Question Answering with BERTserini, NAACL 2019

Model	EM	R	F1
Dr.QA (Chen et al., 2017)	27.1	77.8	-
Dr.QA + Fine-tune	28.4	-	-
Dr.QA + Multitask	29.8	-	-
R ³ (Wang et al., 2017)	29.1	-	37.5
Kratzwald and Feuerriegel (2018)	29.8	-	-
Par. R. (Lee et al., 2018)	28.5	83.1	-
Par. R. + Answer Agg.	28.9	-	-
Par. R. + Full Agg.	30.2	-	-
BERTserini (Article, $k = 5$)	19.1	63.1	25.9
BERTserini (Paragraph, $k = 29$)	36.6	75.0	44.0
BERTserini (Sentence, $k = 78$)	34.0	67.5	41.0
BERTserini (Paragraph, $k = 100$)	38.6	85.8	46.1

Figure: Results on SQuAD development questions.

Table of Contents

A Simple Baseline: Retriever + Reader

Data Augmentation

Model Improvement

Distant Supervision

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

 BERTserini only fine-tune BERT on the original SQuAD dataset, containing a total of only 442 documents.

Distant Supervision

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

- BERTserini only fine-tune BERT on the original SQuAD dataset, containing a total of only 442 documents.
- O This contrasts with the diversity of paragraphs that the model will likely encounter at inference time in the retrieval-based setting.

Distant Supervision

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

- BERTserini only fine-tune BERT on the original SQuAD dataset, containing a total of only 442 documents.
- O This contrasts with the diversity of paragraphs that the model will likely encounter at inference time in the retrieval-based setting.
- O We create additional training examples by fetching paragraphs from the corpus using Anserini and give these paragraphs labels based on the ground truth answers provided.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

 SRC + DS: Fine-tune BERT with all data, "lumped" together as a single, larger training set. In practice, this means that the source and augmented data are shuffled together.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

- SRC + DS: Fine-tune BERT with all data, "lumped" together as a single, larger training set. In practice, this means that the source and augmented data are shuffled together.
- $\mathsf{O}\ \mathbf{DS}\to\mathbf{SRC}:$ Fine-tune the reader in stages, first on the augmented data and then the source dataset.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

- SRC + DS: Fine-tune BERT with all data, "lumped" together as a single, larger training set. In practice, this means that the source and augmented data are shuffled together.
- $\mathsf{O}\ \mathbf{DS}\to\mathbf{SRC}:$ Fine-tune the reader in stages, first on the augmented data and then the source dataset.
- $\circ~\text{SRC} \rightarrow \text{DS}:$ Fine-tune the reader in stages, on the source dataset and then the augmented data.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Model	EM	F_1	EM	F_1
	SQι	IAD	CM	IRC
SRC	41.8	49.5	44.5	60.9
DS(+)	44.0	51.4	45.5	61.1
$DS(\pm)$	48.7	56.5	48.3	63.9
$SRC+DS(\pm)$	45.7	53.5	49.0	64.6
$DS(\pm) o SRC$	47.4	55.0	45.6	61.9
$SRC\toDS(\pm)$	50.2	58.2	49.2	65.4

Table: Results exploring different approaches to combining source and augmented training data on the two datasets: SQuAD and CMRC.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

• **Top-down**: We choose negative examples with the highest paragraph scores from the retrieved paragraphs.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

- **Top-down**: We choose negative examples with the highest paragraph scores from the retrieved paragraphs.
- **Bottom-up**: We choose negative examples with the lowest paragraph scores from the retrieved paragraphs.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

- **Top-down**: We choose negative examples with the highest paragraph scores from the retrieved paragraphs.
- **Bottom-up**: We choose negative examples with the lowest paragraph scores from the retrieved paragraphs.
- O **Random**: We randomly sample negative examples from the retrieved paragraphs.

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

	SQuAD		CMRC	
	EM	F1	EM	F1
Top-down	49.2	57.2 54.9 57.6	48.8	64.5
Top-down Bottom-up	46.8	54.9	48.6	65.2
Random	49.6	57.6	48.6	64.7

Table: Effects of different negative sampling strategies on SQuAD and CMRC.

Sample Ratio

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

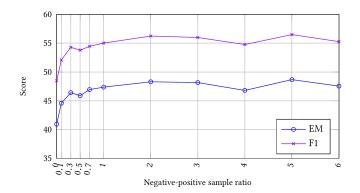


Figure: Effects of varying d, the positive-negative ratio of examples, on SQuAD.

Parameter Analysis

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

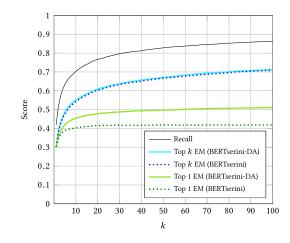


Figure: Effects of the number of retrieved paragraphs k on SQUAD

Victor Wei Yang

Recent Advances on Open Domain Question Answering

Sample Analysis

Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Question	Answers from BERTserini*	Answers from our augmented model
Super Bowl 50 decided the NFL champion for what season?	Super Bowl XXXVII was an American football game between the American Football Conference (AFC) champion Oakland Raiders and the National Football Conference (NFC) champion Tampa Bay Buccaneers to decide the National Football League (NFL) champion for the 2002 season.	Super Bowl 50 decided the 2015 NFL Champion and was played at Levi's Stadium in Santa Clara, California on Sunday, February 7, 2016.

Table: Sample questions and answers

Unsolved Issues

Multiple Spans

Question: Which British general was killed at Khartoum in 1885? Answer: Gordon Context: In February 1885 Gordon returned to the Sudan to evacuate Egyptian forces. Khartoum came under siege the next month and rebels broke into the city, killing Gordon and the other defenders. The British public reacted to his death by acclaiming 'Gordon of Khartoum', a saint. However, historians have suggested that Gordon...

Figure: Noisy supervision can cause many spans of text that contain the answer, but are not situated in a context that relates to the question (red), to distract the model from learning from more relevant spans (green).

Victor Wei Yang

Unsolved Issues

Adversarial Examples

Article: Super Bowl 50 Paragraph: "Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV." Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?" Original Prediction: John Elway Prediction under adversary: Jeff Dean

Figure: An example from the SQuAD dataset. The BiDAF Ensemble model originally gets the answer correct, but is fooled by the addition of an adversarial distracting sentence (in blue).

Table of Contents

A Simple Baseline: Retriever + Reader

Data Augmentation

Model Improvement

Paragraph Reranking

Ranking Paragraphs for Improving Answer Recall in Open-Domain Question Answering

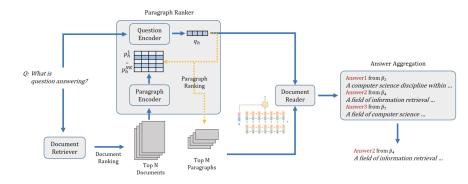


Figure: Open-domain QA pipeline with Paragraph Ranker

Answer Reranking

- 1. Evidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering
- 2. Retrieve, Read, Rerank: Towards End-to-End Multi-Document Reading Comprehension

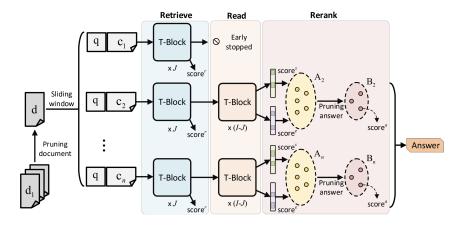
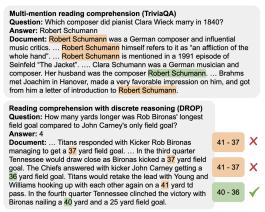


Figure: Retrieve-Read-Rerank QA Architecture

Victor Wei Yang

A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

- O Multi-mention reading comprehension
- O Reading comprehension with discrete reasoning
- O Semantic Parsing



A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

In the weak supervision scenario, the model has access to x and $Z = \{z_1, z_2, \ldots, z_n\}$, and the selection of the best solution in Z can be modeled as a latent variable.

$$J_{\mathsf{MML}}(\theta|x, Z) = -\log \qquad \mathbb{P}(y|x; \theta) \\ = -\log \qquad \sum_{z_i \in Z_{\mathsf{tot}}} \mathbb{P}(y|z_i) \mathbb{P}(z_i|x; \theta) \\ = -\log \qquad \sum_{z_i \in Z} \mathbb{P}(z_i|x; \theta)$$

3. SQL Query Generation (WIKISQL)

```
Question: What player played guard for Toronto in 1996-1997?

Table Header: player, year, position, ...

Answer (y): John Long

f: SQL executor

Z<sub>tot</sub>: Non-nested SQL queries with up to 3 conditions

Z: Select player where position=guard and year in toronto=1996-97

Select max(player) where position=guard

Select min(player) where position=guard

Select min(player) where year in toronto=1996-97

Select min(player) where year in toronto=1996-97

Select min(player) where position=guard and year in toronto=1996-97
```

A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

O The model computes the likelihood of each z_i given the input x with respect to θ , $\mathbb{P}(z_i|x;\theta)$, and picks one of Z with the largest likelihood:

$$\tilde{z} = \operatorname{argmax}_{z_i \in Z} \mathbb{P}(z_i | x; \theta)$$

A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

O The model computes the likelihood of each z_i given the input x with respect to θ , $\mathbb{P}(z_i|x;\theta)$, and picks one of Z with the largest likelihood:

$$\tilde{z} = \operatorname{argmax}_{z_i \in Z} \mathbb{P}(z_i | x; \theta)$$

O Then, the model optimizes on a standard negative log likelihood objective, assuming \tilde{z} is a true solution.

$$\begin{aligned} J_{\mathsf{Hard}}(\theta|x,Z) &= -\log \mathbb{P}(\tilde{z}|x;\theta) \\ &= -\log \max_{z_i \in Z} \mathbb{P}(z_i|x;\theta) \\ &= -\max_{z_i \in Z} \log \mathbb{P}(z_i|x;\theta) \end{aligned}$$

A Discrete Hard EM Approach for Weakly Supervised Question Answering, ACL 2019

Model	Accuracy	
	Dev	Test
Weakly-supervised setting		
REINFORCE (Williams, 1992) Iterative ML (Liang et al., 2017) Hard EM (Liang et al., 2018) Beam-based MML (Liang et al., 2018) MAPO (Liang et al., 2018) MAPOX (Agarwal et al., 2019) MAPOX+MeRL (Agarwal et al., 2019) MML Ours	< 10 70.1 70.2 70.7 71.8 74.5 74.9 70.6 84.4	72.4 74.2 74.8 70.5 83.9
Fully-supervised setting	•	
SQLNet (Xu et al., 2018) TypeSQL (Yu et al., 2018b) Coarse2Fine (Dong and Lapata, 2018) SQLova (Hwang et al., 2019) X-SQL (He et al., 2019)	69.8 74.5 79.0 87.2 89.5	68.0 73.5 78.5 86.2 88.7

Figure: Results on WIKISQL

Other Works

- **Transfer Learning**: MultiQA: An Empirical Investigation of Generalization and Transfer in Reading Comprehension
- Integration with Knowledge Bases: Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
- Integration with Syntax Information: SG-Net: Syntax-Guided Machine Reading Comprehension
- **Questions with Reasoning and Explanations**: Dynamically Fused Graph Network for Multi-hop Reasoning

Summary

O BERTserini

- O Anserini-retriever
- O BERT reader
- O Aggregator

Summary

O BERTserini

- O Anserini-retriever
- O BERT reader
- O Aggregator

O Data Augmentation

- O Fine-tuning Order
- O Negative Sampling Strategy
- O Sample Ratio

Summary

0 BERTserini

- O Anserini-retriever
- O BERT reader
- O Aggregator

O Data Augmentation

- O Fine-tuning Order
- O Negative Sampling Strategy
- O Sample Ratio

O Model Improvement

- O Paragraph Reranking
- O Answer Reranking
- O A Discrete Hard EM Approach
- O Syntax-Guided Attentive Network

O Information Retrieval and Semantic Matching:

O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)

- O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)
- O Document Expansion by Query Prediction (submitted to WWW)

- O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)
- O Document Expansion by Query Prediction (submitted to WWW)
- O Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models (SIGIR best short paper honorable mention)

- O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)
- O Document Expansion by Query Prediction (submitted to WWW)
- O Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models (SIGIR best short paper honorable mention)
- O Incorporating Compositional and Syntactic Structures Improves Semantic Similarity Modeling (EMNLP)

- O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)
- O Document Expansion by Query Prediction (submitted to WWW)
- O Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models (SIGIR best short paper honorable mention)
- O Incorporating Compositional and Syntactic Structures Improves Semantic Similarity Modeling (EMNLP)
- O Bridging the Gap of Relevance Matching and Semantic Matching with Hierarchical CoAttention Network (EMNLP)

- O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)
- O Document Expansion by Query Prediction (submitted to WWW)
- O Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models (SIGIR best short paper honorable mention)
- O Incorporating Compositional and Syntactic Structures Improves Semantic Similarity Modeling (EMNLP)
- Bridging the Gap of Relevance Matching and Semantic Matching with Hierarchical CoAttention Network (EMNLP)
- O MultiPerspective Relevance Matching with Hierarchical ConvNets for Social Media Search (AAAI)

O Information Retrieval and Semantic Matching:

- O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)
- O Document Expansion by Query Prediction (submitted to WWW)
- O Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models (SIGIR best short paper honorable mention)
- O Incorporating Compositional and Syntactic Structures Improves Semantic Similarity Modeling (EMNLP)
- O Bridging the Gap of Relevance Matching and Semantic Matching with Hierarchical CoAttention Network (EMNLP)
- O MultiPerspective Relevance Matching with Hierarchical ConvNets for Social Media Search (AAAI)

• Dialogue Analaysis

O End-to-End Neural Context Reconstruction in Chinese Dialogue (ACL workshop)

• Information Retrieval and Semantic Matching:

- O Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval (EMNLP)
- O Document Expansion by Query Prediction (submitted to WWW)
- O Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models (SIGIR best short paper honorable mention)
- O Incorporating Compositional and Syntactic Structures Improves Semantic Similarity Modeling (EMNLP)
- Bridging the Gap of Relevance Matching and Semantic Matching with Hierarchical CoAttention Network (EMNLP)
- O MultiPerspective Relevance Matching with Hierarchical ConvNets for Social Media Search (AAAI)

O Dialogue Analaysis

- O End-to-End Neural Context Reconstruction in Chinese Dialogue (ACL workshop)
- O Detecting Customer Complaint Escalation with Recurrent Neural Networks and Manually-Engineered Features (NAACL)

Victor Wei Yang

Recent Advances on Open Domain Question Answering

Q & A

Thanks!