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Motivation

e The nearest neighbour problem has applications in many areas, such as data mining, information
retrieval, databases, and machine learning

e Curse of dimensionality: Can be efficiently solved at low-dimensions using computational
geometry data structures, but space complexity grows at n®@[1]

e Instead look towards approximate nearest neighbours (ANN) - popular ways include kd trees,
balltrees, LSH



Related Work

e Single Machine & Brute Force k-NN

o  Pros: high accuracy

o Problems: low efficiency, especially when data grows large and distributed through network
e Distributed K-D tree [Mohamed et al. 2008]

o  Pros: high efficiency sacrificing little effectiveness

o  Consl:low efficiency when data dimension grows large

o  Cons2: graph-based, not efficient to parallelize (due to iterations, think MapReduce implementation of PageRank)
e LSH at Large [Haghani et al. 2008]:
o Pros: Built on top of Chord-like P2P network (data is distributed)

o  Cons: Designed for querying points one by one, not for batch workloads



LSH using Apache Spark

Many modern workloads cannot fit inside the memory of a single machine - large datasets, each

data point has many features
o e.g.80million tiny images data set for object/scene recognition is 240 GB [2]

e Often,dataisstored in adistributed file system, like HDFS

e Frameworks like MapReduce and Spark have become the de-facto for massive parallel
computation on large datasets

e Toour knowledge, thereis little literature on distributed LSH using a modern parallel computation

engine for the problem of ANN



LSH using Apache Spark cont'ed

e Wefound an open-source Spark implementation® of hybrid spill tree approach of solving (ANN)
e Want tocompare LSH against this approach and examine accuracy vs. running time, scalability

e Sparkhas 2 family of APls:

o  Traditional Resilient Distributed Dataset (RDD)-based API
o New DataFrame API

' https://github.com/saurfang/spark-knn



https://github.com/saurfang/spark-knn
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Algorithm 1: LSH-based Approximate k-Nearest
Neighbor Search Algorithm

1 Function LSHKNN (H, Q);
Input : Hash Table H and Query Data Set Q
QOutput: Prediction List of labels L

2 L+ oo

3 forg=1,2,... ndo // for each query
sample

4 fori=1,2,....mdo // for each hash

table

5 compute h, ; = gi(Qy)

6 find candidates C; = findHash(H ,hy.;)

7 end

8 collect candidates C = 6 Ci
i=1
9 find best candidates by some distance matric
C' = findFirst(C,min(k,length(C)))
10 L.insert(l,)
11 end
12 return L;

Algorithm 2: Distributed LSH

1 Function largeLSH (H, Q,k,d);
Input : Hash Table H, Query Data Set O, Neighbor
Number &, and distance threshold d
Output: Prediction List of labels L
2 generate ID column for H and Q
3 results < H.approxSimilarityJoin(Q)  // search
the hash table and union the results
through a map-reduce way
4 resultsThres < filter(results, d) // get rid of
candidates far from the query points
5 resultsSelected «+— SELECT trainID, testID,
distance FROM results_thres
[6 resultsPartitioned < ]
findTopkB yPartition(resultsSelected, k)
7 L < resultsPartitioned.map(groundtruth Vector
Intersect predictionVector)
8 return L;




RDD Random Projection Impl. Intuition

Training examples:
RDDJ[LabeledPoint]
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RDD Random Projection Impl. Intuition Cont'ed

Testing examples:
RDDJ[LabeledPoint]
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Evaluation: Infrastructure and Dataset

A small Spark cluster on Microsoft Azure
2 head nodes (A3), 4 cores, 285 GB disk each
2 worker nodes (A4), 8 cores, 14 GB RAM, 605 GB disk each
Evaluated on
o  Standard Image Classification Task
(] MNIST: 60,000 * 784 Train, 10,000 * 784 Query
] SVHN: 73,257 * 3,072 Train, 26,032 * 3,072 Query, 531,131 * 3,072 Extra
o  Large Scale Nearest Neighbor Search Task
] SIFT1M: 1,000,000 * 128 Train, 10,000 * 128 Query
(] SIFT1B: 1,000,000,000 * 128 Train, 10,000 * 128 Query



Evaluation: Accuracy vs. Time

Accuracy as a Function of Different Sets of Parameters on MNIST dataset °® (bl, nht, k)
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Evaluation: Horizontal Scalability

Total Time vs. Total Num Cores

e (#executors, # cores / executor)
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Summary and Take Aways

e LSH-based approach:
o  candeliver high-accuracy results much faster than tree-based approaches
o isflexible: can tune parameters to choose between the accuracy vs. running tradeoff
o  canbe scaled horizontally, but in sublinear fashion (diminishing returns)
e Ourdistributed LSH approach and implementation:
o presents a robust and scalable solution to the distributed k-Nearest Neighbor search problem

over high dimensional data under the batch setting

o  canserve as the baseline of distributed ANN algorithm on two standard batch-retrieval tasks

and show the tradeoff between effectiveness, efficiency, and resources
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