LargeLSH: An Exploration of Locality Sensitive Hashing for
Approximate Nearest Neighbours on High Dimensional Data
using Apache Spark

Wei Yang, Zhucheng Tu | CS 798 | December 13,2017

Outline

e Motivation for using LSH for ANN on high dimensional data
e Related work and background information

e Methodology

e Evaluation

e Summary and main takeaways

Motivation

e The nearest neighbour problem has applications in many areas, such as data mining, information
retrieval, databases, and machine learning

e Curse of dimensionality: Can be efficiently solved at low-dimensions using computational
geometry data structures, but space complexity grows at n®@[1]

e Instead look towards approximate nearest neighbours (ANN) - popular ways include kd trees,
balltrees, LSH

Related Work

e Single Machine & Brute Force k-NN

o Pros: high accuracy

o Problems: low efficiency, especially when data grows large and distributed through network
e Distributed K-D tree [Mohamed et al. 2008]

o Pros: high efficiency sacrificing little effectiveness

o Consl:low efficiency when data dimension grows large

o Cons2: graph-based, not efficient to parallelize (due to iterations, think MapReduce implementation of PageRank)
e LSH at Large [Haghani et al. 2008]:
o Pros: Built on top of Chord-like P2P network (data is distributed)

o Cons: Designed for querying points one by one, not for batch workloads

LSH using Apache Spark

Many modern workloads cannot fit inside the memory of a single machine - large datasets, each

data point has many features
o e.g.80million tiny images data set for object/scene recognition is 240 GB [2]

e Often,dataisstored in adistributed file system, like HDFS

e Frameworks like MapReduce and Spark have become the de-facto for massive parallel
computation on large datasets

e Toour knowledge, thereis little literature on distributed LSH using a modern parallel computation

engine for the problem of ANN

LSH using Apache Spark cont'ed

e Wefound an open-source Spark implementation® of hybrid spill tree approach of solving (ANN)
e Want tocompare LSH against this approach and examine accuracy vs. running time, scalability

e Sparkhas 2 family of APls:

o Traditional Resilient Distributed Dataset (RDD)-based API
o New DataFrame API

' https://github.com/saurfang/spark-knn

https://github.com/saurfang/spark-knn

Random Projection

N

N

Random Line

.
O
.
.
. .
. .
.

/

>

e i ‘
i

Random Line

:L(a-v+b)

: ha,b,w(v) -

J

oo
B

8

@]

s
B

o
X

Query

Q ue ry Bucket 1 Bucketd | Bucket 1
Bucket 2 I Bucket 2 Bucket 2
-
Bucket K Bucket K Bucket K
Table 1 Table 2 Table M
SCSLIT T e
Candidates

Filter

Top k
Candidates

Algorithm 1: LSH-based Approximate k-Nearest
Neighbor Search Algorithm

1 Function LSHKNN (H, Q);
Input : Hash Table H and Query Data Set Q
QOutput: Prediction List of labels L

2 L+ oo

3 forg=1,2,... ndo // for each query
sample

4 fori=1,2,....mdo // for each hash

table

5 compute h, ; = gi(Qy)

6 find candidates C; = findHash(H ,hy.;)

7 end

8 collect candidates C = 6 Ci
i=1
9 find best candidates by some distance matric
C' = findFirst(C,min(k,length(C)))
10 L.insert(l,)
11 end
12 return L;

Algorithm 2: Distributed LSH

1 Function largeLSH (H, Q,k,d);
Input : Hash Table H, Query Data Set O, Neighbor
Number &, and distance threshold d
Output: Prediction List of labels L
2 generate ID column for H and Q
3 results < H.approxSimilarityJoin(Q) // search
the hash table and union the results
through a map-reduce way
4 resultsThres < filter(results, d) // get rid of
candidates far from the query points
5 resultsSelected «+— SELECT trainID, testID,
distance FROM results_thres
[6 resultsPartitioned <]
findTopkB yPartition(resultsSelected, k)
7 L < resultsPartitioned.map(groundtruth Vector
Intersect predictionVector)
8 return L;

RDD Random Projection Impl. Intuition

Training examples:
RDDJ[LabeledPoint]

flatMap

hash functions

hash functions

hash functions
set

—

aggregateByKey

-

m sets of n

hash emit

functions

(sig1, 1) — labels : List
(sig2, 1) — labels : List

(sigm, m) — labels : List

((sig1, 1), label1)
((sig2, 2), label2)

iiéigm, m), labelm)

RDD Random Projection Impl. Intuition Cont'ed

Testing examples:
RDDJ[LabeledPoint]

(prediction, gold
label)

—

map

—

emit

hash functions ((sig1, 1), label1)
' ((sig2, 2), label2)

hash functions

hash functions

déigm, m), labelm)
set

Pick most frequent label or
compare distances and pick
most frequent label in k-closest

U list of labels
found under
these keys in
training set

Evaluation: Infrastructure and Dataset

A small Spark cluster on Microsoft Azure
2 head nodes (A3), 4 cores, 285 GB disk each
2 worker nodes (A4), 8 cores, 14 GB RAM, 605 GB disk each
Evaluated on
o Standard Image Classification Task
(] MNIST: 60,000 * 784 Train, 10,000 * 784 Query
] SVHN: 73,257 * 3,072 Train, 26,032 * 3,072 Query, 531,131 * 3,072 Extra
o Large Scale Nearest Neighbor Search Task
] SIFT1M: 1,000,000 * 128 Train, 10,000 * 128 Query
(] SIFT1B: 1,000,000,000 * 128 Train, 10,000 * 128 Query

Evaluation: Accuracy vs. Time

Accuracy as a Function of Different Sets of Parameters on MNIST dataset °® (bl, nht, k)

: 793" L o bl=bucketlength

) . ((-)E:i é?;:a) i s o nht=#hash tables

@ (2(;55) (8,i,:> 659 o k=4#nearest neighbours

e ((s')> e 1bl 1time, 1 accuracy
e, | C e tnht, 1time, 1 accuracy
ot e 71k, negligible effect on time,

B doesn’t necessarily 1 accuracy

.59

B spilltree implementation runs very

Time to Classify Test Set (s)

slowly, need closer examination to
ascertain result

Evaluation: Horizontal Scalability

Total Time vs. Total Num Cores

e (#executors, # cores / executor)

500 @ Total Time (s)
i e Tcores, | time but with
a1 diminishing returns
& e When the total # cores is fixed,
R more executors and fewer cores
g ¢ per executor is better than fewer
g 200 . 3:2) &2 (CRRIP)
b 6y 9 I executors and more cores per
@3 e ZE) @9)

d] * executor

100

2 4 6 8 10 12 14 16

Total Num Cores

Summary and Take Aways

e LSH-based approach:
o candeliver high-accuracy results much faster than tree-based approaches
o isflexible: can tune parameters to choose between the accuracy vs. running tradeoff
o canbe scaled horizontally, but in sublinear fashion (diminishing returns)
e Ourdistributed LSH approach and implementation:
o presents a robust and scalable solution to the distributed k-Nearest Neighbor search problem

over high dimensional data under the batch setting

o canserve as the baseline of distributed ANN algorithm on two standard batch-retrieval tasks

and show the tradeoff between effectiveness, efficiency, and resources

References

[1] SHALEV-SHWARTZ,S., AND BEN-DAVID, S. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[2] TORRALBA, A., FERGUS, R., AND FREEMAN, W.T. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine
intelligence 30, 11 (2008), 1958-1970.

[3] Aly, Mohamed, Mario Munich, and Pietro Perona. "Distributed kd-trees for retrieval from very large
image collections." Proceedings of the British Machine Vision Conference (BMVC). Vol. 17.2011.

[4] Haghani, Parisa, et al. "LSH At Large-Distributed KNN Search in High Dimensions." WebDB. 2008.

