
LargeLSH: An Exploration of Locality Sensitive Hashing for
Approximate Nearest Neighbours on High Dimensional Data
using Apache Spark

Wei Yang, Zhucheng Tu | CS 798 | December 13, 2017

Outline

● Motivation for using LSH for ANN on high dimensional data

● Related work and background information

● Methodology

● Evaluation

● Summary and main takeaways

Motivation

● The nearest neighbour problem has applications in many areas, such as data mining, information

retrieval, databases, and machine learning

● Curse of dimensionality: Can be efficiently solved at low-dimensions using computational

geometry data structures, but space complexity grows at nO(d) [1]

● Instead look towards approximate nearest neighbours (ANN) - popular ways include kd trees,

balltrees, LSH

Related Work

● Single Machine & Brute Force k-NN

○ Pros: high accuracy

○ Problems: low efficiency, especially when data grows large and distributed through network

● Distributed K-D tree [Mohamed et al. 2008]

○ Pros: high efficiency sacrificing little effectiveness

○ Cons1: low efficiency when data dimension grows large

○ Cons2: graph-based, not efficient to parallelize (due to iterations, think MapReduce implementation of PageRank)

● LSH at Large [Haghani et al. 2008]:

○ Pros: Built on top of Chord-like P2P network (data is distributed)

○ Cons: Designed for querying points one by one, not for batch workloads

LSH using Apache Spark

● Many modern workloads cannot fit inside the memory of a single machine - large datasets, each

data point has many features

○ e.g. 80 million tiny images data set for object/scene recognition is 240 GB [2]

● Often, data is stored in a distributed file system, like HDFS

● Frameworks like MapReduce and Spark have become the de-facto for massive parallel

computation on large datasets

● To our knowledge, there is little literature on distributed LSH using a modern parallel computation

engine for the problem of ANN

LSH using Apache Spark cont’ed

● We found an open-source Spark implementation1 of hybrid spill tree approach of solving (ANN)

● Want to compare LSH against this approach and examine accuracy vs. running time, scalability

● Spark has 2 family of APIs:

○ Traditional Resilient Distributed Dataset (RDD)-based API

○ New DataFrame API

1 https://github.com/saurfang/spark-knn

https://github.com/saurfang/spark-knn

Random Projection

Query

RDD Random Projection Impl. Intuition

hash functions
sethash functions

sethash functions
set

m sets of n
hash
functions

Training examples:
RDD[LabeledPoint]

flatMap

aggregateByKey

emit

((sig1, 1), label1)
((sig2, 2), label2)
…
((sigm, m), labelm)

(sig1, 1) → labels : List
(sig2, 1) → labels : List
…
(sigm, m) → labels : List

RDD Random Projection Impl. Intuition Cont’ed

Testing examples:
RDD[LabeledPoint]

hash functions
sethash functions

sethash functions
setmap

((sig1, 1), label1)
((sig2, 2), label2)
…
((sigm, m), labelm)

⋃ list of labels
found under
these keys in
training set

Pick most frequent label or
compare distances and pick
most frequent label in k-closestemit

(prediction, gold
label)

Evaluation: Infrastructure and Dataset

● A small Spark cluster on Microsoft Azure

● 2 head nodes (A3), 4 cores, 285 GB disk each

● 2 worker nodes (A4), 8 cores, 14 GB RAM, 605 GB disk each

● Evaluated on
○ Standard Image Classification Task

■ MNIST: 60,000 * 784 Train, 10,000 * 784 Query
■ SVHN: 73,257 * 3,072 Train, 26,032 * 3,072 Query, 531,131 * 3,072 Extra

○ Large Scale Nearest Neighbor Search Task
■ SIFT1M: 1,000,000 * 128 Train, 10,000 * 128 Query
■ SIFT1B: 1,000,000,000 * 128 Train, 10,000 * 128 Query

Evaluation: Accuracy vs. Time
● (bl, nht, k)

○ bl = bucket length

○ nht = # hash tables

○ k = # nearest neighbours

● ↑ bl, ↑ time, ↑ accuracy

● ↑ nht, ↑ time, ↑ accuracy

● ↑ k, negligible effect on time,

doesn’t necessarily ↑ accuracy

spilltree implementation runs very
slowly, need closer examination to
ascertain result

Evaluation: Horizontal Scalability

● (# executors, # cores / executor)

● ↑ cores, ↓ time but with

diminishing returns

● When the total # cores is fixed,

more executors and fewer cores

per executor is better than fewer

executors and more cores per

executor

Summary and Take Aways

● LSH-based approach:

○ can deliver high-accuracy results much faster than tree-based approaches

○ is flexible: can tune parameters to choose between the accuracy vs. running tradeoff

○ can be scaled horizontally, but in sublinear fashion (diminishing returns)

● Our distributed LSH approach and implementation:

○ presents a robust and scalable solution to the distributed k-Nearest Neighbor search problem

over high dimensional data under the batch setting

○ can serve as the baseline of distributed ANN algorithm on two standard batch-retrieval tasks

and show the tradeoff between effectiveness, efficiency, and resources

References

[1] SHALEV-SHWARTZ, S., AND BEN-DAVID, S. Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.

[2] TORRALBA, A., FERGUS, R., AND FREEMAN, W. T. 80 million tiny images: A large data set for

nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine

intelligence 30, 11 (2008), 1958–1970.

[3] Aly, Mohamed, Mario Munich, and Pietro Perona. "Distributed kd-trees for retrieval from very large

image collections." Proceedings of the British Machine Vision Conference (BMVC). Vol. 17. 2011.

[4] Haghani, Parisa, et al. "LSH At Large-Distributed KNN Search in High Dimensions." WebDB. 2008.

